Report for the Fourth Quarter of 2024 pursuant to the Consent Decree entered in United States v. Westchester Joint Water Works, 24 Civ. 4783 (S.D.N.Y.)

This report summarizes the work undertaken to comply with the consent decree from the date of its entry on September 23, 2024 through December 31, 2024 and provides the information required by paragraphs 70 and 71 of the consent decree.

The following are actionable items, relative to paragraph 71.a:

VII. INJUNCTIVE RELIEF: FILTRATION PLANT

23. Subject to Paragraph 33 and Section XIII (Force Majeure), by October 8, 2024, WJWW shall obtain all approvals from the Town/Village of Harrison Planning Board required under the local land use review procedure for the Filtration Plant.

WJWW did receive all approvals from the Town/Village of Harrison Planning Board by October 8, 2024. However, it should be noted that recent discussions with the FAA have resulted in minor changes to the landscaping plan for the filtration plant to satisfy FAA concerns that the plantings not attract birds that could interfere with airport operations. These landscaping changes may require a minor amendment to the site plan approval issued by the Planning Board.

Such approvals include, but may not be limited to, the following:

- On July 23, 2024 the Town/Village of Harrison Planning Board granted WJWW subdivision approval, site plan approval, a special exception use permit, and a freshwater wetland permit.
- On July 11, 2024 the Town/Village of Harrison Zoning Board of Appeals granted WJWW approval of a zoning variance required for the filtration plant's security fence, which was required as a prerequisite for above Planning Board approvals.

24. Subject to Paragraph 33 and Section XIII (Force Majeure), by November 8, 2024, WJWW shall complete and submit to the appropriate authorities all applications for all necessary local, state, and federal approvals and permits for the Filtration Plant, other than the application for the Contractor Permits.

WJWW did complete and submit to the appropriate authorities all applications for all necessary local, state, and federal approvals and permits for the Filtration Plant by November 8, 2024, other than those required after construction of the filtration plant has commenced.

Such applications, and subsequent approvals include, but may not be limited to, the following:

- On September 30, 2022, the Federal Aviation Administration (FAA) issued a Letter of Determination of Federal Aviation Administration Approval Authority – Land Swap Project.
- On May 26, 2023, the New York City Department of Environmental Protection (NYCDEP) approved the Stormwater Pollution Prevention Plan (SWPPP).
- On April 8, 2024, the Westchester County Board of Legislators adopted a State Environmental Quality Review Act (SEQRA) Findings Statement.
- On June 11, 2024, WJWW submitted an initial Application for Building Permit to the Town/Village of Harrison Building Department and resubmitted the application on August 29, 2024, in response to comments.
- On August 7, 2024, the Town/Village of Harrison Town Board adopted a SEQRA Findings Statement.
- On August 19, 2024, WJWW notified the New York State Department of Environmental Conservation ("NYSDEC") of the planned change in ownership and change of use of the filtration plant site portion of the County Airport property as required due to the County Airport's participation in the NYSDEC brownfield cleanup program ("BCP"). On or about the same date, the County of Westchester made a similar filing to NYSDEC under the BCP. Further BCP filings will be required after the transfer of title of the filtration plant site to WJWW.
- On August 14, 2024, Approvals of Plans for construction of the filtration plant were issued by the Westchester County Department of Health (WCDOH) and the New York State Department of Health (NYSDOH), respectively.
- On August 27, 2024, WJWW submitted a Land Development application to the Town/Village of Harrison Engineering Department.
- On September 10, 2024, WJWW received Town/Village of Harrison Architectural Review Board approval.
- On October 14, 2024, WJWW submitted a PERM-33-COM Permit application to the New York State Department of Transportation (NYSDOT).

- On October 15, 2024, NYSDEC issued a State Pollutant Discharge Elimination System (SPDES) Permit and Freshwater Wetlands Permit for the filtration plant.
- On October 22, 2024, the Town/Village of Harrison accepted the SWPPP.
- On November 8, 2024, NYSDEC issued their Acknowledgement of Notice of Intent for coverage under NYSDEC's stormwater general permit for construction activity.
- On December 17, 2024, the FAA issued a Determination of No Hazard to Air Navigation related to filtration plant structure. It should be noted that the application was submitted on November 4, 2024. A future filing is anticipated to be required relating to the construction crane to be used for the construction work.

26. Subject to Paragraph 33 and Section XIII (Force Majeure), WJWW shall complete the acquisition of the site selected for construction of the Filtration Plant by April 20, 2025, and shall submit proof of the acquisition to the EPA and the State within 30 Days of such acquisition.

- A tentative closing date of January 22, 2025, has been scheduled with Westchester County to complete the acquisition of the site selected for construction of the filtration plant.

34. Prior to commencing construction of the Filtration Plant, WJWW shall evaluate any potential adverse impacts of such construction and other actions undertaken pursuant to this Consent Decree, including to the extent to which these impacts affect already overburdened and underserved populations. WJWW shall schedule at least one public meeting...

- The environmental impact statement ("EIS") for the project considered its construction impacts in detail. The draft EIS ("DEIS") and final EIS ("FEIS") for the project are posted on the project web site: <u>https://wjwwfiltration.org/</u>

WJWW held a duly noticed public hearing on the DEIS on May 25, 2022 for the purpose of taking public comment on the DEIS, which was released to the public on April 12, 2022 for review and comment. The public comment period on the DEIS began April 13, 2022 and ran through June 6, 2022. WJWW considered all comments received at the public hearing and during the public comment and responded to the comments in the FEIS. The project has not changed materially since the public hearing held in 2022. Accordingly, WJWW has considered the construction impacts of the project and held a public hearing theron. No further public hearing on construction impacts is required.

The area near the filtration plant is not characterized by already overburdened and underserved populations, as the project site is not proximate to any census tract that New York State has identified as a disadvantaged community. *See* <u>https://climate.ny.gov/Resources/Disadvantaged-Communities-Criteria#nys-universal-navigation</u>.

VIII. INJUNCTIVE RELIEF: INTERIM MEASURES

43. WJWW shall remain in compliance with the TTHM and HAA5 monitoring requirements, methodology requirements, and reporting requirements of the Stage 2 DBPR.

WJWW continues to comply.

44. WJWW shall conduct monitoring quarterly for TTHM and HAA5 in accordance with 40 C.F.R. § 141.621(a) and WJWW's approved monitoring plan...

WJWW continues to comply.

45. WJWW must comply with all public notice requirements specified in 40 C.F.R. Part 141, Subpart Q, for any TTHM or HAA5 MCL violation that occurs after the Effective Date of this Consent Decree.

There have been no violations since the Effective Date of the Consent Decree.

46. In addition to routine reporting to the WCDOH, WJWW shall submit to EPA the results of the TTHM and HAA5 monitoring required by this subparagraph...

A copy of the 2024 4th Quarter TTHM and HAA5 Sampling Report previously provided to the WCDOH, under cover letter dated December 16, 2024, is annexed as Appendix A. These results have been posted on the WJWW Filtration Plant microsite <u>https://wjwwfiltration.org/</u>

47. If the WJWW Water System violates a TTHM or HAA5 MCL, WJWW must submit a report to EPA, WCDOH, and NYSDOH ...

There have been no violations since the Effective Date of the Consent Decree.

48. At all times after the Effective Date during the duration of this Decree, WJWW must implement the flushing protocol attached hereto as Appendix B...

The flushing protocol was implemented in 2020 and has continued uninterrupted to date and will continue.

50. WJWW must report results from the source water monitoring to EPA, NYSDOH and WCDOH no later than 10 Days after the end of the first month following the month when the sample is collected. Within 14 Days after WJWW has submitted the results of the source monitoring to EPA, NYSDOH and WCDOH, WJWW shall post the results of the monitoring on its website.

LT2 Second Round Source Water Monitoring Sample Results for October, November, and December 2024, were submitted to the EPA, the NYSDOH, and the WCDOH on November 11, 2024, December 9, 2024, and January 8, 2025, respectively. These results have been posted on the WJWW Filtration Plant microsite https://wjwwfiltration.org/

53. <u>CT Calculations</u>. For each day the WJWW water system is in operation, the WJWW shall calculate the total inactivation ratio pursuant to the provisions of 40 C.F.R. §§ 141.74(b)(3) and (4). WJWW shall report to EPA, NYSDOH, and WCDOH the information listed at 40 C.F.R. § 141.75(a)(2) monthly, within 10 Days after the end of each month.

Water System Operating Reports for October, November, and December 2024, were submitted to the EPA and the NYSDOH on November 19, 2024, December 9, 2024, and January 8, 2025, and to the WCDOH on November 8, 2024, December 9, 2024, and January 7, 2025, respectively.

55. Within 45 Days after the Effective Date, WJWW must provide notice in writing to its consumers, and to the owner and operator of all public water systems that purchase water from the WJWW, explaining that Defendants entered into a Consent Decree...

Copies of postcards mailed to consumers on November 7, 2024, letters and notices mailed to owners/operators of public water systems on November 7, 2024, a public notice published in the local Gannett Lohud Journal News, and related documentation are annexed as Appendix B.

57. WJWW shall include a statement in its annual Drinking Water Quality Report until compliance with the deadlines in Section VII is achieved...

The next annual Drinking Water Quality Report has not been prepared yet and is due by June 1, 2025.

58. Prior to commencing construction of the Filtration Plant, WJWW shall establish and maintain a website or a webpage on its website...

The required information is available to the public at the project website: <u>https://wjwwfiltration.org/</u>

X. SUPPLEMENTAL ENVIRONMENTAL PROJECT

61. WJWW shall implement a Supplemental Environmental Project ("SEP") in accordance with this Section X and the SEP Memo annexed as Appendix D. WJWW shall spend no less than \$900,000 to implement the SEP. The SEP shall be completed within 54 months after the Effective Date in accordance with the schedule of milestones set forth in Appendix D. The SEP shall be comprised of the project to improve the quality of storm water entering the Kensico Reservoir described in the SEP Memo annexed as Appendix D.

- On December 20, 2024, WJWW submitted its Preliminary Design Report for the SEP to NYCDEP for its review. A copy of the Preliminary Design Report is annexed as Appendix C.

64. SEP Completion Report. No later than 56 months from the Effective Date, Defendants shall submit a SEP Completion Report to DOJ, EPA and the State in accordance with Section XVIII (Notices). The SEP Completion Report shall contain the following information:

c. an itemized list of all eligible SEP costs expended;

- It can be noted that WJWW has expended \$11,961 to date.

This project was undertaken in connection with the settlement of an enforcement action, United States v. Westchester Joint Water Works, taken on behalf of the U.S. Environmental Protection Agency under the Safe Drinking Water Act.

VI. CIVIL PENALTY

17. In addition, WJWW shall spend a total of at least \$6,800,000 on two water quality benefit projects (the "Benefit Projects"). ... The Benefit Projects are: (i) a new water main to the Quarry Heights neighborhood of the Town of North Castle (the "Quarry Heights Project"), as described in Appendix A, and (ii) the establishment of a Lead Service Line Replacement Program (the "Lead Service Line Replacement Program").

- With regard to 17.a, WJWW has deposited \$1,100,000 into a segregated account be used exclusively for the Quarry Heights Project.

18. WJWW shall provide the State with an accounting of the amount spent on the Benefit Projects within 60 Days of project completion.

- Neither the Quarry Heights Project nor the Lead Service Line Replacement Program has been completed. It can be noted that the Quarry Heights Project is approximately 85% complete with this project expected to be fully completed by Summer 2025.
- It can be noted that WJWW has expended approximately \$305,003 on the Quarry Heights Project to date, and has expended \$0 on the Lead Service Line Replacement Program to date.

I hope that the above provides a satisfactory Quarterly Report. Should you require any additional information, details or clarification, please let me know.

73. Certification

I certify under penalty of perjury that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for knowingly submitting false information, including the possibility of fine and imprisonment for knowing violations.

Dated: January 15, 2025

Paul Kutzy, P.E. Manager Westchester Joint Water Works 1625 Mamaroneck Ave. Mamaroneck, NY 10543 Office: 914-698-3500 x 612 Fax: 914-381-4241 pkutzy@wjww.com

APPENDIX A

2024 Q4 TTHM and HAA5 Sampling Report

WESTCHESTER JOINT WATER WORKS

1625 Mamaroneck Avenue Mamaroneck, New York 10543 www.wjww.com Telephone: (914) 698-3500 Fax: (914) 381-4241 Fax: (914) 381-0349

December 16, 2024

Ms. Nawrin Anwar Senior Engineer Bureau of Environmental Quality Westchester County Department of Health 25 Moore Avenue Mt. Kisco, NY 10549

Dear Ms. Anwar,

I have attached the Westchester Joint Water Works 2024 4th quarter THM and HAA5 results.

If you have any questions, feel free to contact me. Thank you.

Very truly yours,

miel Pinone

Daniel Pirrone Chief Water Treatment Pl. Operator IB

Bureau of Environmental Quality Public Water Supply Stage II Trihalomethanes (THM) Sampling Report

<u>Westchester Joint Water Works</u> Name of Public Water Supply

2024 4th Quarter Period

Date of Sampling: 10/24/2024 Time of Sampling: 0800 Through 1100

the second s	6.44							01100						on American	the standard finding of a sum of the second standard st	Cugii	
						2					Provide a l		Piolis	fantion Dtati	Divisionation Reation Rempline Locations	Incatione	
							- Construction		,				,				
	_	N	4	4	o	đ	7	•	y	01	E	21	15	14	C	10	
Bromodichloromethane (ug/L)	4.59	2.41	3.66	4.95	3.59	2.13	3.28	3.24	IIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	HIIIIIIIIII	HIIHHHHH	HIIIIIIIII		INTERPORT INTERPORT INTERPORT INTERPORT INTERPORT INTERPORT		
Bromoform (ug/L)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	HHHHHHH	HHHHHHH	HHHHHHH	HIGHNALL DIMENSION MANAGEMENT AND	11111111111111	
Chloroform (ug/L)	48.40	21.20	30.20	52.40	29.60	16.40	25.00	26.30	JULIU IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	WWWWWW	HHHHHHH	HHHHHHH	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	///////////////////////////////////////	NUMBER INTERPOLIE INTERPOLIE INTERPOLIE INTERPOLIE INTERPOLIE INTERPOLIE	111111111111111	
Dibromochloromethane(ug/L)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		111111111111111		HHHHHHH	1111111111111	HHHHHHH	HIGHDAR HARDONIA HARDONA WARDONA HARDONA HARDONA HARDONA HARDONA	1111111111111	
										IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIII	111111111111111	HHHHHHH		HHHHHHH	AND	11111111111111	
									HHHHHHH	11111111111111	11111111111111	HHHHHHH		111111111111111	THERE IN THE TRADUCTURE AND THE TRADUCTURE AND THE TRADUCTURE AND THE TRADUCTURE	1111111111111	
									1111111111111	HHHHHHH	1111111111111111				INTERPORT INTERPORT INTERPORT INTERPORT	11111111111111	
									ATTACH AT	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	111111111111111		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	HHHHHHH	INTERNAL AND	111111111111111	
Total Trihalomethanes (ug/L)	52.990	23.610	33.860	57.350	33.190	18.530	28.280	29.540									
Total Trihalomethanes (mg/L)	0.053	0.024	0.034	0.057	0.033	0.019	0.028	0.030									_
Sampling Address of Sampling Location /	pling Locati	011		4th Quarter 2024	ter 2024		3rd Qua	3rd Quarter 2024	2nd Qua	2nd Quarter 2024	1st Qua	1st Quarter 2024	Curre	nt Four Qu	Current Four Quarter Rolling Average	g Average	
Location # (Sample Collection Point)	ample Collection Point	ľ	CI2 Resid	CI2 Residual (mg/L)	THM (mg/L)	mg/L)	THM (THM (mg/L)	THM (mg/L	mg/L)	THM	THM (mg/L)		THI	THM (mg/L)		
1 (Hydrau	(Hydrant P-14)		0.35	35	0.053	53	0.0	0.043	0.0	0.043	0.0	0.034			0.043		
2 12 Bev	12 Beverly Rd																
							ļ						Ī				
3 Hyatt House 101 Corporate Park Drive	orporate Par	* Drive															
(Kitchen Sink)	in Sink)		0.57	57	0.034	34	0.0	0.042	0.0	0.030	0	0.030			0.034		

-			_								
Sampl	Lab P	~	7	6	ίλ	4	з	2		Sampling Location #	
Samples Approved 12/14/2024	Lab Performing Analysis: Westchester County Dept of Labs	66 Bellevue Ave (Hydrant No. 3179)	Staples Boston Post Rd (Bathroom Sink)	Booster Station 4195 Purchase St (Lab Sink)	2 Lincoin Lane (Hydrant No. 3883)	1490 Old Orchard Rd (Hydrant No. 6001)	Hyatt House 101 Corporate Park Drive (Kitchen Sink)	12 Beverly Rd (Hydrant No. 3577)	250 Westchester Ave (Hydrant P-14)	Address of Sampling Location / (Sample Collection Point)	
	y Dept of Labs	0.86	0.56	1.15	0.67	0.24	0.57	0.88	0.35	4th Quarter 2024 CI2 Residual (mg/L) TH	0.034 0.097
		0.030	0.028	0.019	0.033	0.057	0.034	0.024	0.053	<u>er 2024</u> <u>THM (mg/L)</u>	0.033 0.019
		0.031	0.038	0.016	0.036	0.060	0.042	0.023	0.043	<u>3rd Quarter 2024</u> THM (mg/L)	0.028
		<u>0.031</u>	0.032	0.018	0.029	0.030	<u>0.030</u>	0.028	<u>0.043</u>	2nd Quarter 2024 THM (mg/L)	
		0.020	0.027	0.011	0.021	0.057	0.030	0.014	0.034	<u>1st Quarter 2024</u> THM (mg/L)	
Rolling Average MCL: 0.08 mg/L		0.028	0.031	0.016	0.030	0.051	0.034	0.022	0.043	<u>Current Four Quarter Rolling Average</u> THM (mg/L)	

Sam		~	7	a		'n	4		2	T	-	Location #	Sampling	Total Ha	Total Ha		Monobry	Trichlory	Monoch	Dichloro	Dibromo		Hai	Wes
Samples Approved 12/14/2024	Lab Performing Analysis: Westchester County Dept of Labs	66 Bella (Hydrant	Staples Boy (Bathro	(Lab Sink)	(Hydrant	2 Linco	(Hydrant	(Kitchen Sink)	12 Bev (Hydrant) Hyatt House 101 C	(Hydra	250 Westo	S)	ng Address of Sampling Location /	Total Haloacetic Acids (mg/L)	Total Haloacetic Acids (ug/L)		Monobromoacetic Acid (ug/L)	Trichloroacetic Acid (ug/L)	Monochloroacetic Acid (ug/L)	Dichloroacetic Acid (ug/L)	Dibromoacettc Acid (ug/L)		Haloacetic Acids (HAA5)	Westchester Joint Water Works Name of Public Water Supply
4	: Westches	66 Bellevue Ave (Hydrant No. 3179)	Staples Boston Post Rd (Bathroom Sink)	(Lab Sink)	(Hydrant No. 3883)	2 Lincoln Lane	(Hydrant No. 6001)	(Kitchen Sink)	12 Beverly Hd (Hydrant No. 3577) 26 101 Comorate Pa	(Hydrant P-14)	250 Westchester Ave	lection Poin	npling Locat	0.031	31.010		0.00	29.30	0.00	1.71	0.00	-	Disinfec	<u>Works</u> oply
	ter County			10.95					rk Drive			¢	tion /	0.029	29.400		0.00	18.30	0.00	11.10	0.00	2	tion Station	
	Dept of Lat	0.86	0.56	1.15	0.67		0.24	0.57	0.88	0.35		CI2 Residual (mg/L)		0.036	35.700		0.00	25.60	0.00	10,10	0.00	ω	Disinfection Station Sampling Locations	
	5	86	56	15	67		24	57	88	35	7	ual (mg/L)		0.024	24.300		0.00	22.60	0.00	1.70	0.00	4	ocations	
	53	2	2		0.		0.	0.	0.0	0.0		HAA5	4th Quarter 2024	0.033	32.600		0.00	22.60	0.00	10.00	0.00	c5	Disinfec	
		0.032	0.023	0.028	0.033		0.024	0.036	0.029	0.031		HAA5 (mg/L)	ter 2024	0.028	27.600		0.00	14,60	0.00	13.00	0.00	0	tion Station	4th (
		0	2	e	0		0	0	0.			HAA5	3rd Quarter 2024	0.023	22.590		0.00	15.60	0.00	6.99	0.00	7	Disinfection Station Sampling Locations	2024 4th Quarter Period
		0.034	0.032	0.027	0.041		0.026	0.036	0.037	0.032		HAA5 (mg/L)	ter 2024	0.032	32.300		0.00	19.30	0.00	13.00	0.00	~	ocations	eriod
		0	e	0	0		0.	0	0			HAA5	2nd Q(<i>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</i>	nunnunnin nu	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	mmmm	9	Disinfe	
		0.041	0.052	0.036	0.047		0.040	0.040	0.040	0.037		HAA5 (mg/L)	2nd Quarter 2024						IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	10	Disinfection Station	
		0	0		.0		o	.o	io.	0	,	HAA5							IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	11111111111111	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	11	Sampling Locations	
		0.034	0.043	0.028	0.036		0,000	0.036	0.032	0.044		HAA5 (mg/L)	1st Quarter 2024					11111111111111	11111111111111	11111111111111	111111111111	12	ocations	
Kollin					T					T			Curren					IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			HIIIIIIIII	13	Disinfe	Da Time o
g Averag	•	10	0		0		10	10	10		,	HAA	t Four Qua			11111111111111111111111111111111111111		11111111111111	11111111111111	HHHHHHH	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	14	ction Statio	ite of Samp f Sampling
Kolling Average MCL: 0.06 mg/L		0.035	0.038	0.030	0.039		0.023	0.037	0.035	0.036		HAA5 (mg/L)	Current Four Quarter Rolling Average				HHHHHHHH		11111111111111	111111111111111	mmmm	15	Disinfection Station Sampling Locations	Date of Sampling: 10/24/2024 Time of Sampling: 0800 Through 1100
.06 mg/L	2												Average						111111111111111	1111111111111	WWWWWW	16	Locations	/2024 ·ugh 1100

Bureau of Environmental Quality Public Water Supply Stage II Haloacetic Acids (HAA5) Sampling Report

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location :	P-14 250 WESTCHESTER AVE W. HARRISON, NY	Received By : Bottle No :		7442 FB0285 T975
Collection Point :	HYDRANT	Collected By :	GIRILLO	
ID of Source :	NYC	Collection Date :		AT 09:15:00
Agency :	Westchester Joint Water Works 1625 Mamaroneck Avenue	Submitted On: PWS No.:		AT 11:55:00
	Mamaroneck, NY 10543 Attn: Frank Arcara	Type Descriptor : pH :	022 7.30	Source ID: 000
		Free CI2 :		Residual CI2 :
addt'l Report To :		Sample chilled on a	brrival ?: YES ble Type: POT_	DW
		Comment :4TH QUA TEMP 16	RTER	

Method **Test Description** Results Qualifier Units **DL/LOQ** Analyzed on Validator **Organics Volatile Organic Compounds** EPA 524.2 *THM-Bromodichloromethane 4.59 0.50 11/07/2024 GZ2 ug/L EPA 524.2 *THM-Bromoform GZ2 < LOQ ug/L 0.50 11/07/2024 EPA 524.2 *THM-Chloroform 48.4 0.50 11/07/2024 GZ2 ug/L EPA 524.2 *THM-Dibromochloromethane < LOQ ug/L 0.50 11/07/2024 GZ2 EPA 524 2 GZ2 1.1.1- Trichloroethane < LOQ ug/L 0.50 11/07/2024 EPA 524.2 1,1,1,2-Tetrachloroethane 0.50 GZ2 < LOQ ug/L 11/07/2024 EPA 524.2 1,1,2,2-Tetrachloroethane 0.50 GZ2 < LOQ ug/L 11/07/2024 EPA 524.2 1,1,2-Trichloroethane < LOQ 0.50 11/07/2024 GZ2 ug/L EPA 524_2 1,1-Dichloroethane < LOQ ug/L 0.50 11/07/2024 GZ2 EPA 524.2 1,1-Dichloroethene < LOO ug/L 0.50 11/07/2024 GZ2 EPA 524.2 1,1-Dichloropropene < LOQ ug/L 0.50 11/07/2024 GZ2 EPA 524.2 GZ2 1,2,3-Trichlorobenzene < LOQ ug/L 0.50 11/07/2024 EPA 524.2 1,2,3-Trichloropropane 0.50 11/07/2024 GZ2 < LOQ ug/L EPA 524_2 1,2,4-Trichlorobenzene < LOQ ug/L 0.50 11/07/2024 GZ2 EPA 524.2 1,2,4-Trimethylbenzene < LOQ 0.50 11/07/2024 GZ2 ug/L EPA 524.2 1,2-Dichlorobenzene < LOQ ug/L 0.50 11/07/2024 GZ2 EPA 524.2 1,2-Dichloroethane < LOQ ug/L 0.50 11/07/2024 GZ2 EPA 524.2 GZ2 1,2-Dichloropropane < LOQ ug/L 0.50 11/07/2024 EPA 524.2 1,3,5-Trimethybenzene 0.50 GZ2 < LOQ ug/L 11/07/2024 EPA 524.2 1,3-Dichlorobenzene 11/07/2024 < LOQ ug/L 0.50 GZ2 DL = Detection Limit LOQ = Limit of Quantitation E=value is an estimate H = exceeds holding time **Approved By** Robert Hilbrandt Jr. Chief of Env. Lab Services Date Approved : 12/14/2024

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

This report shall not be reproduced, except in full, without the written consent of the Westchester County Department of Labs and Research.

5591

Report Number:

Page 1 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Ethylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Isopropylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Methylene Chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Naphthalene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	N-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	p & m-Xylene	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 524.2	p-Isopropyltoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Styrene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Tetrachloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Toluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Vinyl chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2

DL = Detection	Limit L	OQ = Limit of Quantitation	E=value is an estimate		H = exceeds holding time
Approved By	Robert Hilbrandt	Jr. Chief of Env. I	ab Services	Date Approved :	12/14/2024
Environmental NYS ELAP # 10		Report Number:	5591		Page 2 of 2
(914) 231-1620	100	This report shall not be reproduce Westchester County	d, except in full, without the v Department of Labs and Re		Page 2 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
	ry of p-lsopropyltoluene was below the acce ers the analytical data suspect.	ptable QC criteria in the o	daily calibration	check. E	stablished Ic	w bias on <loq< td=""><td></td></loq<>	
	ries of 1,2,4-trichlorobenzene, Hexachlorobu In the LLCCV. Established high bias on <lo< td=""><td></td><td></td><td>robenzene</td><td>were highe</td><td>r than the acceptabl</td><td>e</td></lo<>			robenzene	were highe	r than the acceptabl	e
	y of 1,2,4-trichlorobenzene was higher than	the acceptable QC criter	ia in the closing	g calibratio	on check. Es	stablished high bias	on
<loq result<="" td=""><td>ts are valid to report.</td><td></td><td></td><td></td><td></td><td></td><td></td></loq>	ts are valid to report.						
DN 11/13/24	·						
	4						
DN 11/13/24	4	< LOQ		ug/L	1.00	11/07/2024	GZ2
DN 11/13/24 Haloacetic	4 c Acids	< LOQ < LOQ		ug/L. ug/L	1.00 1.00	11/07/2024 11/07/2024	GZ2 GZ2
DN 11/13/24 <i>Haioacetic</i> PA 552.2 PA 552.2	4 2 Acids Bromochloroacetic Acid			•			
DN 11/13/24 Haloacetic PA 552.2 PA 552.2 PA 552.2	4 Acids Bromochloroacetic Acid Dibromoacetic Acid	< LOQ		ug/L	1.00	11/07/2024	GZ2
DN 11/13/24 Haloacetic PA 552.2	4 S Acids Bromochloroacetic Acid Dibromoacetic Acid Dichloroacetic Acid	< LOQ 1.71		ug/L ug/L	1.00 1.00	11/07/2024 11/07/2024	GZ2 GZ2

DL = Detection	Limit LC	DQ = Limit of Quantitation	E=value is an estimate		H = exceeds holding time
Approved By	Robert Hilbrandt J	Ir. Chief of Env. I	Lab Services	Date Approved :	12/14/2024
Environmental NYS ELAP # 10		Report Number:	5591		Page 3 of 3
(914) 231-1620		This report shall not be reproduce Westchester County	d, except in full, without the Department of Labs and Re		rage 5 01 3

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location :	HYD #3577	Received By :	LG JLM	
	BEVERLY RD HARRISON, NY	Bottle No :	T996 K7395	573967397 FB0285
Collection Point :	HYDRANT	Collected By :	GIRILLO	
ID of Source :	NYC	Collection Date :	10/24/2024	AT 10:10:00
Agency :	Westchester Joint Water Works 1625 Mamaroneck Avenue Mamaroneck, NY 10543 Attn: Frank Arcara	Submitted On : PWS No. : Type Descriptor : pH :	5903435	AT 11:55:00 Source ID : 000
		Free Cl2 :	.88	Residual Cl2 :
		Sample chilled on a	arrival ? : YES	
addt'l Report To :		Samp	ble Type : POT_	DW
		Comment :4TH QUA TEMP 16		

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validate
Organics						
Volatile Or	ganic Compounds					
EPA 524.2	*THM-Bromodichloromethane	2.41	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Bromoform	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Chloroform	21.2	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,1- Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,1,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2-Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524_2	1,1-Dichloroethene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloropropene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,4-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,4-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,3,5-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,3-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
DL = Detection	LOQ = Limit of Quantitatio	n E=value	is an estimate		H = exceeds hold	ling time
Approved By	Robert Hilbrandt Jr. Ch	ief of Env. Lab Services	Date	Approved :	12/14/2024	

NYS ELAP # 10108 (914) 231-1620

This report shall not be reproduced, except in full, without the written consent of the Westchester County Department of Labs and Research. Page 1 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Ethylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Isopropyibenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Methylene Chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Naphthalene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	N-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	p & m-Xytene	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 524.2	p-Isopropyltoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Styrene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Tetrachloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Toluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Vinyl chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2

DL = Detection Lin	nit LOC	e = Limit of Quantitation	E=value is an es	stimate	H = exceeds holding time
Approved By R	obert Hilbrandt Jr.	Chief of Env. L	ab Services	Date Approved :	12/14/2024
Environmental La NYS ELAP # 1010		Report Number:	5591		Page 2 of 3
(914) 231-1620		This report shall not be reproduced Westchester County	· · · · · · · · · · · · · · · · · · ·		rage 2 01 5

Method	Test Description	Results Qua	alifier Units	DL/LOQ	Analyzed on	Validator
	y of p-lsopropyltoluene was below the accepters the analytical data suspect.	ptable QC criteria in the daily ca	libration check. Es	stablished Ic	ow bias on ≺LOQ	
	ies of 1,2,4-trichlorobenzene, Hexachlorobu n the LLCCV. Established high bias on <lo< td=""><td></td><td>3-trichlorobenzene</td><td>were highe</td><td>er than the acceptable</td><td>8</td></lo<>		3-trichlorobenzene	were highe	er than the acceptable	8
The receiver	y of 1,2,4-trichlorobenzene was higher than	the accentable OC criteria in th	e closing calibratio	n check. Es	stablished high bias d	n
	is are valid to report.		o closing calibratic		Aconorio rigri cico (
<loq result<="" th=""><th>s are valid to report,</th><th></th><th></th><th></th><th></th><th></th></loq>	s are valid to report,					
<loq result<br="">DN 11/13/24 Haloacetic</loq>	s are valid to report, A Acids	·	Ū		Ĩ	
<loq result<br="">DN 11/13/24 <i>Haloacetic</i> PA 552.2</loq>	s are valid to report. Acids Bromochloroacetic Acid	< LOQ	ug/L	1.00	11/06/2024	GZ2
<loq result<br="">DN 11/13/24 <i>Haioacetic</i> PA 552.2</loq>	s are valid to report, A Acids	·	Ū		Ĩ	
<loq result<br="">DN 11/13/24 Haloacetic PA 552.2 PA 552.2</loq>	s are valid to report. Acids Bromochloroacetic Acid	< LOQ	ug/L	1.00	11/06/2024	GZ2
<loq result<br="">DN 11/13/24 <i>Haloacetic</i> PA 552.2 PA 552.2 PA 552.2</loq>	s are valid to report. A cids Bromochloroacetic Acid Dibromoacetic Acid	< LOQ < LOQ	ug/L ug/L	1.00 1.00	11/06/2024 11/06/2024	GZ2 GZ2
<loq result<="" td=""><td>s are valid to report. A cids Bromochloroacetic Acid Dibromoacetic Acid Dichloroacetic Acid</td><td>< LOQ < LOQ 11.1</td><td>ug/L ug/L ug/L</td><td>1.00 1.00 1.00</td><td>11/06/2024 11/06/2024 11/06/2024</td><td>GZ2 GZ2 GZ2</td></loq>	s are valid to report. A cids Bromochloroacetic Acid Dibromoacetic Acid Dichloroacetic Acid	< LOQ < LOQ 11.1	ug/L ug/L ug/L	1.00 1.00 1.00	11/06/2024 11/06/2024 11/06/2024	GZ2 GZ2 GZ2

DL = Detection	Lîmit Li	OQ = Limit of Quantitation	E=value is an estimate		H = exceeds holding time
Approved By	Robert Hilbrandt	Jr. Chief of Env. La	ab Services	Date Approved :	12/14/2024
Environmental NYS ELAP # 10		Report Number:	5591		Page 3 of 3
(914) 231-1620		This report shall not be reproduced Westchester County I	l, except in full, without the v Department of Labs and Re		rage 3 of 3

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhaila, New York 10595

Sample Location :	HYATT HOUSE 101 CORP PARK DR HARRISON, NY	Received By : Bottle No :	LG JLM K7371 7372 7373 FB0285 T958
Collection Point :	SAMPLE STATION PORT	Collected By :	GIRILLO
ID of Source :	NYC	Collection Date :	10/24/2024 AT 08:55:00
Agency :	Westchester Joint Water Works 1625 Mamaroneck Avenue Mamaroneck, NY 10543 Attn: Frank Arcara	PWS No. : Type Descriptor :	022 Source ID : 000 7.30
		Sample chilled on a	arrival ?: YES
addt'l Report To :		Samp	ble Type: POT_DW
·		Comment :4TH QUA TEMP 16	

Method	Test Description	Results (Qualifier Units	DL/LOQ	Analyzed on	Validato
Organics						
	ganic Compounds					
EPA 524 2	*THM-Bromodichloromethane	3.66	ug/L	0.50	11/07/2024	GZ2
EPA 524 2	*THM-Bromoform	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Chloroform	30.2	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,1- Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,1,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2-Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloroethene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524_2	1,1-Dichloropropene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524_2	1,2,4-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,4-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524 2	1,2-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524 2	1,3,5-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,3-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
DL = Detection	Limit LOQ = Limit of Quantita	tion E=value i	s an estimate		H = exceeds hold	ling time
Approved By	Robert Hilbrandt Jr.	Chief of Env. Lab Services	Date	Approved :	12/14/2024	

Environmental Laboratories NYS ELAP # 10108 (914) 231-1620

This report shall not be reproduced, except in full, without the written consent of the Westchester County Department of Labs and Research.

5591

Report Number:

Page 1 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	1,3-Dichloropropane	< LOQ	8	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Ethylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Isopropylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Methylene Chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Naphthalene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	N-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	p & m-Xylene	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 524.2	p-Isopropyltoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Styrene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Tetrachloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Toluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	ĠZ2
EPA 524.2	Trichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichtorofluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Vinyl chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2

DL = Detection	Limit LC	DQ = Limit of Quantitation	E=value is an estimate		H = exceeds holding time
Approved By	Robert Hilbrandt	Ir. Chief of Env. L	ab Services	Date Approved :	12/14/2024
Environmental NYS ELAP # 10		Report Number:	5591		Desc 1 of 2
(914) 231-1620		This report shall not be reproduced Westchester County	d, except in full, without the v Department of Labs and Re		Page 2 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
	y of p-lsopropyltoluene was below the acce ers the analytical data suspect.	eptable QC criteria in the	daily calibratior	check, E	stablished lo	w bias on <loq< td=""><td></td></loq<>	
	ies of 1,2,4-trichlorobenzene, Hexachlorob n the LLCCV. Established high bias on <lc< td=""><td></td><td></td><td>robenzene</td><td>were highe</td><td>r than the acceptab</td><td>le</td></lc<>			robenzene	were highe	r than the acceptab	le
	y of 1,2,4-trichlorobenzene was higher than s are valid to report.	the acceptable QC crite	ria in the closin	g calibratio	on check Es	stablished high bias	on
DN 11/13/24	k i se						
Haloacetic	Acids						
EPA 552.2	Bromochloroacetic Acid	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Dibromoacetic Acid	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Dichloroacetic Acid	10.1		ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Monobromoacetic Acid	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Monochloroacetic Acid	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 552.2	Trichloroacetic Acid	25.6		ug/L	1.00	11/07/2024	GZ2

DL = Detection Limit	LOQ = Limit o	f Quantitation	E=value is an estimate		H = exceeds holding time
Approved By Robe	ert Hilbrandt Jr.	Chief of Env. Lab	Services	Date Approved :	12/14/2024
Environmental Labor NYS ELAP # 10108	atories	Report Number:	5591		Page 3 of 3
(914) 231-1620	This repo	rt shall not be reproduced, e Westchester County De	except in full, without the partment of Labs and Re		rage 3 01 3

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location :	HYD #6001 1490 OLD ORCHARD ST W. HARRISON, NY	Received By : Bottle No :	LG JLM K7272 7273 7274 FB0285 T851
Collection Point :	HYDRANT	Collected By :	GIRILLO
ID of Source :	NYC	Collection Date :	10/24/2024 AT 11:10:00
Agency :	Westchester Joint Water Works 1625 Mamaroneck Avenue Mamaroneck, NY 10543 Attn: Frank Arcara	PWS No. : Type Descriptor :	
	Aun. Frank Argara	Free Cl2 :	
dall David Tax		Sample chilled on a	
addt'l Report To :		samp Comment :4TH QUA TEMP 17	

st Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validato
Compounds					
THM-Bromodichloromethane	4.95	ug/L	0.50	11/07/2024	GZ2
THM-Bromoform	< LOQ	ug/L	0.50	11/07/2024	GZ2
THM-Chloroform	52.4	ug/L	1.00	11/07/2024	GZ2
THM-Dibromochloromethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
,1,1- Trichtoroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
,1,1,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
,1,2,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
,1,2-Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
,1-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
1-Dichloroethene	< LOQ	ug/L	0.50	11/07/2024	GZ2
,1-Dichloropropene	< LOQ	ug/L	0.50	11/07/2024	GZ2
,2,3-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
,2,3-Trichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
,2,4-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
2,4-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
,2-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
,2-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
,2-Dichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
,3,5-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
,3-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
LOQ = Limit of Quantitation	E=value	is an estimate		H = exceeds he	olding time
ert Hilbrandt Jr. Chief o	of Env. Lab Services	Date	Approved :	12/14/2024	
ert Hilb ratories	randt Jr. Chief c	randt Jr. Chief of Env. Lab Services	randt Jr. Chief of Env. Lab Services Date	randt Jr. Chief of Env. Lab Services Date Approved :	randt Jr. Chief of Env. Lab Services Date Approved : 12/14/2024

NYS ELAP # 10108 (914) 231-1620

This report shall not be reproduced, except in full, without the written consent of the Westchester County Department of Labs and Research.

Page 1 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2-Chiorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Ethylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ		ug/L	0.50	11/07/2024	ĠZ2
EPA 524.2	isopropylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Methylene Chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Naphthalene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	N-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	p & m-Xylene	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 524.2	p-Isopropyitoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Styrene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Tetrachloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Toluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1.2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524 2	Trichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524 2	Vinyl chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2

DL = Detection	Limit LO	Q = Limit of Quantitation	E=value is an estimate		H = exceeds holding time
Approved By	Robert Hilbrandt Ji	Chief of Env.	Lab Services	Date Approved :	12/14/2024
Environmental NYS ELAP # 10		Report Number:	5591		Page 2 of 3
(914) 231-1620		This report shall not be reproduct Westchester Count	ed, except in full, without the v Department of Labs and Re		

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
	of p-Isopropyltoluene was below the acc s the analytical data suspect.	eptable QC criteria in the c	daily calibratior	n check. E	stablished lo	w bias on <loq< th=""><th></th></loq<>	

The recoveries of 1,2,4-trichlorobenzene, Hexachlorobutadiene, Naphthalene, and 1,2,3-trichlorobenzene were higher than the acceptable QC criteria in the LLCCV. Established high bias on <LOQ results are valid to report.

The recovery of 1,2,4-trichlorobenzene was higher than the acceptable QC criteria in the closing calibration check. Established high bias on <LOQ results are valid to report.

Chloroform exceeded the calibration range. Sample was reanalyzed with a 1:2 dilution:

DN 11/13/24 Haloacetic Acids

Haloacetic Aci	ds					
EPA 552.2	Bromochloroacetic Acid	< LOQ	ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Dibromoacetic Acid	< LOQ	ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Dichloroacetic Acid	1.70	ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Monobromoacetic Acid	< LOQ	ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Monochloroacetic Acid	< LOQ	ug/L	2.00	11/07/2024	GZ2
EPA 552.2	Trichloroacetic Acid	22.6	ug/L	1.00	11/07/2024	GZ2

DL = Detection	Limit LC	DQ = Limit of Quantitation	E=value is an estimate		H = exceeds holding time
Approved By	Robert Hilbrandt J	Ir. Chief of Env.	Lab Services	Date Approved :	12/14/2024
Environmental NYS ELAP # 10		Report Number:	5591		Page 3 of 3
(914) 231-1620		This report shall not be reproduce	ed, except in full, without the v v Department of Labs and Res		Fage 5 01 5

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location :	HYD #3883 2 LINCOLN AVE HARRISON, NY	Received By : Bottle No :	LG JLM K7437 7438 7439 FB0285 T0017
Collection Point :	HYDRANT	Collected By :	GIRILLO
ID of Source :	NYC		10/24/2024 AT 08:30:00
Agency :	Westchester Joint Water Works 1625 Mamaroneck Avenue Mamaroneck, NY 10543 Attn: Frank Arcara	PWS No. : Type Descriptor :	
		Free Cl2 :	
addt'l Report To :		Sample chilled on a Samp	Inrival ?: YES Ile Type: POT_DW
		Comment :4TH QUA TEMP 16	RTER

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validator
Organics						
	ganic Compounds					
EPA 524.2	*THM-Bromodichloromethane	3.59	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Bromoform	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Chloroform	29.6	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,1- Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,1,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2-Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloroethene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloropropene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,4-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,4-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524,2	1,2-Dichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,3,5-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,3-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
DL = Detection	Limit LOQ = Limit of Quantitation	E=value	is an estimate		H = exceeds hold	ing time
Approved By	Robert Hilbrandt Jr. Chief e	of Env. Lab Services	Date	Approved :	12/14/2024	

Report Number:

NYS ELAP # 10108 (914) 231-1620

This report shall not be reproduced, except in full, without the written consent of the Westchester County Department of Labs and Research.

Page 1 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Ethylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Isopropylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Methylene Chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	G Z 2
EPA 524.2	Naphthalene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	N-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	p & m-Xylene	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 524.2	p-tsopropyltoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Styrene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Tetrachloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Toluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichtoroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Vinyl chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2

DL = Detection Limit	LOQ = Limit of Quantitation	E=value is an es	stimate	H = exceeds holding time
Approved By Robert Hilbrand	It Jr. Chief of Env. I	ab Services	Date Approved :	12/14/2024
Environmental Laboratories NYS ELAP # 10108	Report Number:	5591		
(914) 231-1620	This report shall not be reproduce	d, except in full, witho Department of Labs		Page 2 of 3

Method	Test Description	Results Q	ualifier Units	DL/LOQ	Analyzed on	Validator
	y of p-lsopropyltoluene was below the accepters the analytical data suspect.	ptable QC criteria in the daily of	calibration check. E	stablished lo	ow bias on <loq< td=""><td></td></loq<>	
	ies of 1,2,4-trichlorobenzene, Hexachlorobu n the LLCCV. Established high bias on <lo< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>2,3-trichlorobenzene</td><td>e were highe</td><td>er than the acceptabl</td><td>e</td></lo<>	· · · · · · · · · · · · · · · · · · ·	2,3-trichlorobenzene	e were highe	er than the acceptabl	e
	y of 1,2,4-trichlorobenzene was higher than	the acceptable QC criteria in	the closing calibration	on check, E	stablished high bias	on
<loq result<="" td=""><td>ts are valid to report.</td><td></td><td></td><td></td><td></td><td></td></loq>	ts are valid to report.					
<loq result<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td></loq>						
	k.					
DN 11/13/24	k.	< LOQ	ug/L	1.00	11/07/2024	GZ2
DN 11/13/24 Haloacetic	Acids	< LOQ < LOQ	ug/L ug/L	1.00 1.00	11/07/2024 11/07/2024	GZ2 GZ2
DN 11/13/24 Haloacetic EPA 552.2	Acids Bromochloroacetic Acid		-			
DN 11/13/24 Haloacetic EPA 552.2 EPA 552.2	Acids Bromochloroacetic Acid Dibromoacetic Acid	< LOQ	ug/L	1.00	11/07/2024	GZ2
DN 11/13/24 Haioacetic EPA 552.2 EPA 552.2 EPA 552.2	Acids Bromochloroacetic Acid Dibromoacetic Acid Dichloroacetic Acid	< LOQ 10.0	ug/L ug/L	1.00 1.00	11/07/2024 11/07/2024	GZ2 GZ2

DL = Detection	Limit	LOQ = Limit of Quantitation	E=value is an est	imate	H = exceeds holding time
Approved By	Robert Hilbrand	t Jr. Chief of Env. L	ab Services	Date Approved :	12/14/2024
Environmental NYS ELAP # 10		Report Number:	5591		Page 3 of 3
(914) 231-1620		This report shall not be reproduce Westchester County	d, except in full, withou Department of Labs a		Fage 3 01 3

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location :	PURCHASE BOOSTER 4195 PURCHASE ST HARRISON, NY	Received By : LG JLM Bottle No : T986 K7404 7405 7406 FB0285
Collection Point :	ENTRY POINT	Collected By : GIRILLO
ID of Source :	NYC	Collection Date: 10/24/2024 AT 08:00:00
Anonous	Westchester Joint Water Works	Submitted On: 10/24/2024 AT 11:55:00
Agency .	1625 Mamaroneck Avenue	PWS No.: 5903435
	Mamaroneck, NY 10543	Type Descriptor: 022 Source ID: 000
	Attn: Frank Arcara	pH: 7.50
		Free CI2: 1.15 Residual CI2:
		Sample chilled on arrival ?: YES
addt'l Report To :		Sample Type : POT_DW
		Comment :4TH QUARTER
		TEMP 17.7 C TURB .76

Method	Test Description	Results Q	ualifier Units	DL/LOQ	Analyzed on	Validato
Organics						
Volatile Or	ganic Compounds					
EPA 524 2	*THM-Bromodichloromethane	2.13	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Bromoform	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Chloroform	16.4	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,1-Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,1,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2-Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524 2	1,1-Dichloroethene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloropropene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,4-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,4-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,3,5-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,3-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
DL = Detection	Limit LOQ = Limit of Quantitation	on E=value is	an estimate		H = exceeds hold	ling time
Approved By	Robert Hilbrandt Jr. Ci	hief of Env. Lab Services	Date	Approved :	12/14/2024	

NYS ELAP # 10108 (914) 231-1620

This report shall not be reproduced, except in full, without the written consent of the Westchester County Department of Labs and Research. Page 1 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Ethylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Isopropylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Methylene Chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Naphthalene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	N-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	p & m-Xylene	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 524.2	p-isopropyltoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Styrene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Tetrachloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Toluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Vinyl chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2

DL = Detection Lim	hit LOQ	= Limit of Quantitation	E=value is an es	timate	H = exceeds holding time
Approved By R	obert Hilbrandt Jr.	Chief of Env. L	ab Services	Date Approved :	12/14/2024
Environmental Lai		Report Number:	5591		Page 1 of 2
(914) 231-1620		his report shall not be reproduced Westchester County			Page 2 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
	of p-Isopropyltoluene was below the acce ins the analytical data suspect.	ptable QC criteria in the	daily calibration	i check. E	stablished lo	w bias on <loq< td=""><td></td></loq<>	
	es of 1,2,4-trichlorobenzene, Hexachlorob the LLCCV. Established high bias on <lc< td=""><td></td><td></td><td>robenzene</td><td>were highe</td><td>r than the acceptabl</td><td>e</td></lc<>			robenzene	were highe	r than the acceptabl	e
	of 1,2,4-trichlorobenzene was higher than are valid to report.	the acceptable QC crite	ria in the closin	g calibratio	on check. Es	tablished high bias o	on
DN 11/13/24							
Haloacetic	Acids						
EPA 552.2	Bromochloroacetic Acid	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Dibromoacetic Acid	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Dichloroacetic Acid	13.0		ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Monobromoacetic Acid	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 552.2	Monochloroacetic Acid	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 552.2	Trichloroacetic Acid	14.6		ug/L	1.00	11/07/2024	GZ2

DL = Detection	Limit LO	DQ = Limit of Quantitation	E=value is an estimate		H = exceeds holding time
Approved By	Robert Hilbrandt	Ir. Chief of Env. L	ab Services	Date Approved :	12/14/2024
Environmental NYS ELAP # 10		Report Number:	5591		Page 3 of 3
(914) 231-1620		This report shall not be reproduced Westchester County	d, except in full, without the Department of Labs and Re		

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location :	STAPLES 2444 BOSTON POST RD TOWN OF MAMARONECK, NY	Received By : Bottle No :	LG JLM T622 K7284 7285 7286 FB0285
Collection Point :	SAMPLE STATION PORT	Collected By :	GIRILLO
ID of Source :	NYC	Collection Date :	10/24/2024 AT 10:10:00
Agency :	Westchester Joint Water Works 1625 Mamaroneck Avenue Mamaroneck, NY 10543 Attn: Frank Arcara	PWS No. : Type Descriptor :	
	Aun. Frank Arcara	Free Cl2 :	.56 Residual Cl2 :
		Sample chilled on a	irrival ?: YES
addt'l Report To :		Samp	le Type: POT_DW
		Comment :4TH QUA	RTER

TEMP 16.3 C

Method	Test Description	Results	Qualifier Units	DL/LOQ	Analyzed on	Validato
Organics						
Volatile Or	ganic Compounds					
EPA 524.2	*THM-Bromodichloromethane	3.28	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Bromoform	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Chloroform	25.0	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,1-Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,1,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2-Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloroethene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524 2	1,1-Dichloropropene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,4-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,4-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,3,5-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,3-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
DL = Detection	Limit LOQ = Limit of Quar	titation E≍valu	e is an estimate		H = exceeds hold	ling time
Approved By	Robert Hilbrandt Jr.	Chief of Env. Lab Service	s Date	Approved :	12/14/2024	

NYS ELAP # 10108 (914) 231-1620

This report shall not be reproduced, except in full, without the written consent of the Westchester County Department of Labs and Research.

Page 1 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,4-Dichlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Ethylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Isopropylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Methylene Chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Naphthalene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	N-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	p & m-Xylene	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 524.2	p-Isopropyltoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Styrene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Tetrachloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Toluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524 2	trans-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524-2	Trichlorofluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Vinyt chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2

DL = Detection Limit	LOQ = Limit	of Quantitation	E=value is an estir	nate	H = exceeds holding time
Approved By Robert	Hilbrandt Jr.	Chief of Env. L	ab Services	Date Approved :	12/14/2024
Environmental Laborato	ries	Report Number:	5591		Page 2 of 3
(914) 231-1620	This rep	ort shall not be reproduced Westchester County	d, except in full, without Department of Labs an		Fage 2 01 5

Method	Test Description	Results Qu	alifier Units	DL/LOQ	Analyzed on	Validator
	y of p-lsopropyltoluene was below the acce ars the analytical data suspect.	ptable QC criteria in the daily c	alibration check. Es	tablished lo	w bias on <loq< td=""><td></td></loq<>	
	ies of 1,2,4-trichlorobenzene, Hexachlorobunt n the LLCCV. Established high bias on <lc< td=""><td></td><td>,3-trichlorobenzene</td><td>were highe</td><td>r than the acceptable</td><td>e</td></lc<>		,3-trichlorobenzene	were highe	r than the acceptable	e
	y of 1,2,4-trichlorobenzene was higher than s are valid to report.	the acceptable QC criteria in t	he closing calibratio	on check. Es	stablished high bias o	on
DN 11/13/24						
Haloacetic						
		< LOQ	ug/L	1.00	11/06/2024	GZ2
Haloacetic	Acids	< LOQ < LOQ	ug/L ug/L	1.00 1.00	11/06/2024 11/06/2024	GZ2 GZ2
Haloacetic EPA 552.2	Acids Bromochloroacetic Acid		•			
Haloacetic EPA 552.2 EPA 552.2	Acids Bromochloroacetic Acid Dibromoacetic Acid	< LOQ	ug/L	1.00	11/06/2024	GZ2
Haloacetic EPA 552.2 EPA 552.2 EPA 552.2	Acids Bromochloroacetic Acid Dibromoacetic Acid Dichloroacetic Acid	< LOQ 6.99	ug/L ug/L	1.00 1.00	11/06/2024 11/06/2024	GZ2 GZ2

DL = Detection	Limit LO	Q = Limit of Quantitation	E=value is an estimate		H = exceeds holding time
Approved By	Robert Hilbrandt J	r. Chief of Env. L	ab Services	Date Approved :	12/14/2024
Environmental NYS ELAP # 10		Report Number:	5591		Page 3 of 3
(914) 231-1620		This report shall not be reproduced Westchester County	l, except in full, without the v Department of Labs and Re		rageouro

REPORT OF ANALYSIS

Westchester County Department of Labs and Research

10 Dana Road Valhalla, New York 10595

Sample Location :	HYD #3179 66 BELLEVUE AVE HARRISON, NY	Received By : Bottle No :	LG JLM K7416 7417 7418 FB0285 T0024
Collection Point :	HYDRANT	Collected By :	GIRILLO
ID of Source :	NYC		10/24/2024 AT 09:45:00
Agency :	Westchester Joint Water Works 1625 Mamaroneck Avenue Mamaroneck, NY 10543 Attn: Frank Arcara	PWS No. : Type Descriptor :	
	Aun: Frank Arcara	Free CI2 :	.86 Residual CI2 :
addt'l Report To :		Sample chilled on a Samp Comment :4TH QUA	le Type: POT_DW

TEMP 15.8 C Results **Oualifier** Units DL/LOQ Analyzed on

Method	Test Description	Results Q	alifier Units	DL/LOQ	Analyzed on	Validato
Organics						
	ganic Compounds					
EPA 524.2	*THM-Bromodichloromethane	3.24	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Bromoform	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Chloroform	26.3	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	*THM-Dibromochloromethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524 2	1,1,1- Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524 2	1,1,1,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1,2,2-Tetrachloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524 2	1,1,2-Trichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524:2	1,1-Dichloroethene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,1-Dichloropropene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2,3-Trichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524 2	1,2,4-Trichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524 2	1.2,4-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichloroethane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,2-Dichloropropane	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,3,5-Trimethylbenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
EPA 524-2	1,3-Dichlorobenzene	< LOQ	ug/L	0.50	11/07/2024	GZ2
DL = Detection	Limit LOQ = Limit of Quan	titation E=value is	an estimate		H = exceeds hold	ling time
Approved By	Robert Hilbrandt Jr.	Chief of Env. Lab Services	Date	Approved :	12/14/2024	

NYS ELAP # 10108 (914) 231-1620

This report shall not be reproduced, except in full, without the written consent of the Westchester County Department of Labs and Research.

Page 1 of 3

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator
EPA 524.2	1,3-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	1,4-Dichtorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2,2-Dichloropropane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	2-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	4-Chlorotoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Benzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromochloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Bromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Carbon tetrachloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chlorobenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloroethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Chloromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	cis-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dibromomethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Dichlorodifluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Ethylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Hexachlorobutadiene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Isopropylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MEK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Methyl tert-butyl ether	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Methylene Chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	MIBK(not certified by NYSDOH)	< LOQ		ug/L	2.00	11/07/2024	GZ2
EPA 524.2	Naphthalene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	N-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	n-Propylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	o-Xylene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	p & m-Xylene	< LOQ		ug/L	1.00	11/07/2024	GZ2
EPA 524.2	p-Isopropyltoluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	sec-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Styrene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	tert-Butylbenzene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Tetrachloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Toluene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,2-Dichloroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	trans-1,3-Dichloropropene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichtoroethene	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Trichlorofluoromethane	< LOQ		ug/L	0.50	11/07/2024	GZ2
EPA 524.2	Vinyl chloride	< LOQ		ug/L	0.50	11/07/2024	GZ2

DL = Detection Limit	LOQ = Limit of Quantitation	E=value is an es	stimate H = exceeds holding time	
Approved By Robert Hi	brandt Jr. Chie	f of Env. Lab Services	Date Approved : 12/14/2024	
Environmental Laboratorio	s Report Nu	mber: 5591	Page 2 of 3	
(914) 231-1620	·	This report shall not be reproduced, except in full, without the written consent of the Westchester County Department of Labs and Research.		

Method	Test Description	Results	Qualifier	Units	DL/LOQ	Analyzed on	Validator			
	The recovery of p-Isopropyltoluene was below the acceptable QC criteria in the daily calibration check. Established low bias on <loq analytical="" data="" renders="" results="" suspect.<="" td="" the=""></loq>									
	es of 1,2,4-trichlorobenzene, Hexachlorobu n the LLCCV. Established high bias on <lo< td=""><td></td><td></td><td>robenzene</td><td>were highe</td><td>r than the acceptabl</td><td>e</td></lo<>			robenzene	were highe	r than the acceptabl	e			
	y of 1,2,4-trichlorobenzene was higher than s are valid to report.	the acceptable QC criter	ia in the closin	g calibratio	on check. Es	stablished high bias	on			
DN 11/13/24										
Haloacetic										
		< LOQ		ug/L	1.00	11/07/2024	GZ2			
Haloacetic	Acids	< LOQ < LOQ		ug/L ug/L	1.00 1.00	11/07/2024 11/07/2024	GZ2 GZ2			
Haloacetic EPA 552.2	Acids Bromochloroacetic Acid									
Haloacetic EPA 552.2 EPA 552.2	Acids Bromochloroacetic Acid Dibromoacetic Acid	< LOQ		ug/L	1.00	11/07/2024	GZ2			
Haloacetic EPA 552.2 EPA 552.2 EPA 552.2	Acids Bromochloroacetic Acid Dibromoacetic Acid Dichloroacetic Acid	< LOQ 13.0		ug/L ug/L	1.00 1.00	11/07/2024 11/07/2024	GZ2 GZ2			

DL = Detection Limit	LOQ = Limit of Quanti	tation E=value is an	estimate H	= exceeds holding time
Approved By Robert Hilb	randt Jr.	Chief of Env. Lab Services	Date Approved :	12/14/2024
Environmental Laboratories	Repo	ort Number: 5591		Page 3 of 3
(914) 231-1620	,	This report shall not be reproduced, except in full, without the written consent of the Westchester County Department of Labs and Research.		

APPENDIX B

Public Notices to Consumers 11.07.2024

Mary Polvere

From:	Mary Polvere
Sent:	Wednesday, November 20, 2024 4:57 PM
То:	Water Compliance Branch Chief (Region2_SDWAEnforcement@epa.gov); Phyllis
	Feinmark (feinmark.phyllis@epa.gov); Andrew Frank (andrew.frank@ag.ny.gov); Danielle
	Rysedorph (Danielle.Rysedorph@health.ny.gov); Kristine Wheeler
Cc:	L. Dickson; Philip Karmel, Esq. (Philip.Karmel@bclplaw.com); Paul Kutzy; David Birdsall
Subject:	WJWW FINAL Public Notice to Consumers - Consent Decree - United States v. WJWW et
	al., Civil Action Number 24 Civ. 4783
Attachments:	WJWW CD Postcard - Public Notification 11.07.24.pdf; Aff of Public Notice Mailing &
	USPS Reciept - Consumer Postcard - Minuteman Press 11.07.24.pdf; WJWW Public
	Notice - Public Water Systems Letters & Notice 11.07.24.pdf; Aff of Public Notice
	Mailing & USPS Receipt - Public Water Systems 11.07.24.pdf; Aff & Public Notice
	Gannett Lohud Journal News 11-07-24.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged

To All Concerned Parties,

Attached to this email are documents and receipts relative to the mailing of Westchester Joint Water Works' (WJWW) Final Public Notice to the consumers and owners/operators of public water systems that purchase water from WJWW, which explains that WJWW has entered into a federal consent decree that sets forth a schedule to build a Filtration Plant for the Rye Lake water source for achieving compliance with the maximum contaminant levels for disinfection byproducts and with State law requiring filtration of drinking water taken from surface water sources, pursuant to the consent decree in United States v. WJWW et al., Civil Action Number 24 Civ. 4783.

In addition to the public notification mailings, WJWW placed a public notice in the local Gannett Lohud Journal News newspaper publication.

The attachments, which are meant to provide a record of WJWW's compliance with public notification settlement requirements, are as follows:

- Public Notice to the Consumers (mailed on November 7, 2024):
 - o Postcard (1st attachment)
 - o Affidavit of Mailing and USPS Post Office Receipt (2nd attachment)
- Public Notice to the Owners/Operators of Public Water Systems (mailed on November 7, 2024):
 - o Letters & Notices (3rd attachment)
 - o Affidavit of Mailing and USPS Post Office Receipt (4th attachment)
- Public Notice in the local Gannett Lohud Journal News publication:
 - o Affidavit & Public Notice (5th attachment)

Updates are also being made to the WJWW microsite, pursuant to the settlement.

If I may be of further assistance, please contact me at mpolvere@wjww.com.

Thank you,

Mary Polvere

Secretary to Board of Trustees Westchester Joint Water Works 1625 Mamaroneck Avenue Mamaroneck, New York 10543 (914) 698-3500 Ext. 612

23

To Consumers and Owners/Operators of Public Water Systems **Fhat Purchase Water from Westchester Joint Water Works** Westchester Joint Water Works **Public Notice**

The following notice is being provided to all consumers and owners/operators of public water systems that purchase water from Westchester Joint Water Works (WJWW)

The WJWW has entered into a federal consent decree with the U.S. Environmental Protection Agency and New York State Department of Health that sets forth a schedule to build a Filtration Plant for WJWW's Rye Lake water source. The consent decree provides for the installation of the best available technology for achieving compliance with the maximum contaminant levels for disinfection byproducts and with State law requiring the filtration of drinking water taken from a surface water source.

Under the consent decree, the Filtration Plant is to be constructed by March 1, 2029 and operational by July 1, 2029. A copy of the consent decree and further information regarding WJWW's Rye Lake Filtration Plant Project can be found at <u>www.wjwwfiltration.org</u>

PRSRT STD U.S. POSTAGE	PAID WHITE PLAINS, NY PERMIT #43120
---------------------------	---

Westchester Joint Water Works 1625 Mamaroneck Avenue Mamaroneck, NY 10543

AFFIDAVIT OF MAILING

STATE OF NEW YORK)) ss.: COUNTY OF WESTCHESTER) PIMA PRS [_, having been duly sworn, Gail Aar

deposes and says:

1. On November 7, 2024, I mailed to 14,235 addresses provided by Westchester Joint Water Works a true and accurate copy of the Public Notice to Consumers which was printed on the face of a postage-paid post card by depositing same in an official depository under the exclusive care and custody of the United States Postal Service (USPS) within the State of New York as evidenced by the attached USPS confirmation and acceptance notice.

Signed: Sail Dutan Print Name: Gail Dutan

Sworn to before me this 3 day of November 2024 Notary Public

JOHN DIONISIO Notary Public State of New York Qualified - Westchester County # 01DI4804045 Exp. 9/30/26

1

USPS Generated

Note to Mailer: Your electronic postage statement has been submitted to the USPS *PostalOne!* system on Nov 07, 2024 10:45 AM

The labels and electronic mailing information associated to this form, must match the physical mailing being presented to the USPS® with this form.

Postage Statement ID:	636883174
Post Office of Permit:	WHITE PLAINS, NY 10610-9655
Mailing Group ID:	494151060
Account Holder:	WESTCHESTER JOINT WATER WORKS
Account Number:	1409917
Permit Holder:	WESTCHESTER JOINT WATER WORKS
Permit Type and Number:	Pi 43120
Mail Agent:	MINUTEMAN PRESS
Mail Owner Name:	WESTCHESTER JOINT WATER WORKS
Mail Owner's Permit Type and Number:	
CRID:	13352986
Customer Reference ID:	
Mail Class and Price Eligibility:	USPS Marketing Mail - Regular
Processing Category:	Letters
Single Piece Weight Declared by Mailer:	0.0119 ibs, (0.19 oz)
Total Mail Pieces Declared by Mailer:	14,235 pcs.
Total Weight Declared by Mailer:	169.3965 lbs.
Single Piece Weight Determined by USPS:	0.0119 lbs.
Total Mail Pieces Determined by USPS:	14,235 pcs.
Total Weight Determined by USPS:	169.3965 lbs.
Part A Subtotal Postage:	\$ 300.8280
Part 8 Subtotal Postage:	\$ 96.0160
Part C Subtotal Postage:	\$ 3,228.0020
Total Postage Amount:	\$ 3,624.85
Total Postage Due:	\$ 3,624.85
Handling Unit:	1' MM Trays 2' MM Trays 2' EMM Flat Trays Sacks Pallets Other Trays
	6 9

Important: Please bring your mailing by November 14, 2024 .

Post Office Of Mailing	Hours	
BMEU - WHITE PLAINS	Mon, Tue, Wed, Thu, Fri	10:00 AM - 5:00 PM
1000 WESTCHESTER AVE WHITE PLAINS, NY 106101000	Sat	Closed
White Early, WE footo to to to	Sun	Closed

Note:

*This mailing may be subject to additional verification at the time of acceptance.

1625 Mamaroneck Avenue Mamaroneck, New York 10543 www.wjww.com Telephone: (914) 698-3500 Fax: (914) 381-4241 Fax: (914) 381-0349

November 7, 2024

Mr. Justin Datino Administrator – Village of Larchmont Village of Larchmont Municipal Building 120 Larchmont Avenue Larchmont, New York 10538

RE: WJWW Public Notice to Consumers and Owners/Operators of Public Water Systems That Purchase Water from Westchester Joint Water Works

Dear Mr. Datino:

Please see the enclosed Public Notice concerning Westchester Joint Water Works (WJWW) and its three member municipalities (Village of Mamaroneck, Town of Mamaroneck and Town/Village of Harrison), who have entered into a settlement agreement with the United States Department of Justice, on behalf of the United States Environmental Protection Agency and the New York State Attorney General, on behalf of the New York State Department of Health, in the form of a consent decree (24 Civ. 4783, entered September 23, 2024), that includes milestones and a schedule for construction and operation of a Filtration Plant for treatment of WJWW's Rye Lake water source.

If you have any questions, please feel free to call me at (914) 698-3500 extension 614.

Very truly yours

David Birdsall U WJWW Business Director

cc:

James Cazzorla, Village of Larchmont Paul Kutzy, P.E., WJWW Manager Lori Lee Dickson, WJWW General Counsel

1625 Mamaroneck Avenue Mamaroneck, New York 10543 www.wjww.com Telephone: (914) 698-3500 Fax: (914) 381-4241 Fax: (914) 381-0349

Westchester Joint Water Works

Public Notice

To Consumers and Owners/Operators of Public Water Systems

That Purchase Water from Westchester Joint Water Works

The following notice is being provided to all consumers and owners/operators of public water systems that purchase water from Westchester Joint Water Works (WJWW).

The WJWW has entered into a federal consent decree with the U.S. Environmental Protection Agency and New York State Department of Health that sets forth a schedule to build a Filtration Plant for WJWW's Rye Lake water source.

The consent decree provides for the installation of the best available technology for achieving compliance with the maximum contaminant levels for disinfection byproducts and with State law requiring the filtration of drinking water taken from a surface water source.

Under the consent decree, the Filtration Plant is to be constructed by March 1, 2029 and operational by July 1, 2029.

A copy of the consent decree and further information regarding WJWW's Rye Lake Filtration Plant Project can be found at <u>www.wjwwfiltration.org</u>.

1625 Mamaroneck Avenue Mamaroneck, New York 10543 www.wjww.com Telephone: (914) 698-3500 Fax: (914) 381-4241 Fax: (914) 381-0349

November 7, 2024

John Telesco Operations Manager Veolia Water New York, Inc. (Westchester Rate District 2) 2525 Palmer Avenue New Rochelle, New York 10801

RE: WJWW Public Notice to Consumers and Owners/Operators of Public Water Systems That Purchase Water from Westchester Joint Water Works

Dear Mr. Telesco:

Please see the enclosed Public Notice concerning Westchester Joint Water Works (WJWW) and its three member municipalities (Village of Mamaroneck, Town of Mamaroneck and Town/Village of Harrison), who have entered into a settlement agreement with the United States Department of Justice, on behalf of the United States Environmental Protection Agency and the New York State Attorney General, on behalf of the New York State Department of Health, in the form of a consent decree (24 Civ. 4783, entered September 23, 2024), that includes milestones and a schedule for construction and operation of a Filtration Plant for treatment of WJWW's Rye Lake water source.

If you have any questions, please feel free to call me at (914) 698-3500 extension 614.

Very truly yours,

David Birdsall WJWW Business Director

CC:

Chris Graziano, Veolia Water New York Paul Kutzy, P.E., WJWW Manager Lori Lee Dickson, WJWW General Counsel

1625 Mamaroneck Avenue Mamaroneck, New York 10543 www.wjww.com Telephone: (914) 698-3500 Fax: (914) 381-4241 Fax: (914) 381-0349

Westchester Joint Water Works

Public Notice

To Consumers and Owners/Operators of Public Water Systems

That Purchase Water from Westchester Joint Water Works

The following notice is being provided to all consumers and owners/operators of public water systems that purchase water from Westchester Joint Water Works (WJWW).

The WJWW has entered into a federal consent decree with the U.S. Environmental Protection Agency and New York State Department of Health that sets forth a schedule to build a Filtration Plant for WJWW's Rye Lake water source.

The consent decree provides for the installation of the best available technology for achieving compliance with the maximum contaminant levels for disinfection byproducts and with State law requiring the filtration of drinking water taken from a surface water source.

Under the consent decree, the Filtration Plant is to be constructed by March 1, 2029 and operational by July 1, 2029.

A copy of the consent decree and further information regarding WJWW's Rye Lake Filtration Plant Project can be found at <u>www.wjwwfiltration.org</u>.

1625 Mamaroneck Avenue Mamaroneck, New York 10543 www.wjww.com Telephone: (914) 698-3500 Fax: (914) 381-4241 Fax: (914) 381-0349

November 7, 2024

Mr. Brendan Lyons, Ed.D. Central Administration Chief Operating Officer/Deputy District Superintendent Southern Westchester BOCES 17 Berkley Drive Rye Brook, NY 10573

RE: WJWW Public Notice to Consumers and Owners/Operators of Public Water Systems That Purchase Water from Westchester Joint Water Works

Dear Mr. Lyons:

Please see the enclosed Public Notice concerning Westchester Joint Water Works (WJWW) and its three member municipalities (Village of Mamaroneck, Town of Mamaroneck and Town/Village of Harrison), who have entered into a settlement agreement with the United States Department of Justice, on behalf of the United States Environmental Protection Agency and the New York State Attorney General, on behalf of the New York State Department of Health, in the form of a consent decree (24 Civ. 4783, entered September 23, 2024), that includes milestones and a schedule for construction and operation of a Filtration Plant for treatment of WJWW's Rye Lake water source.

If you have any questions, please feel free to call me at (914) 698-3500 extension 614.

(y truly yours,

David Birdsall WJWW Business Director

cc:

Paul Kutzy, P.E., WJWW Manager Lori Lee Dickson, WJWW General Counsel

1625 Mamaroneck Avenue Mamaroneck, New York 10543 www.wjww.com Telephone: (914) 698-3500 Fax: (914) 381-4241 Fax: (914) 381-0349

Westchester Joint Water Works

Public Notice

To Consumers and Owners/Operators of Public Water Systems

That Purchase Water from Westchester Joint Water Works

The following notice is being provided to all consumers and owners/operators of public water systems that purchase water from Westchester Joint Water Works (WJWW).

The WJWW has entered into a federal consent decree with the U.S. Environmental Protection Agency and New York State Department of Health that sets forth a schedule to build a Filtration Plant for WJWW's Rye Lake water source.

The consent decree provides for the installation of the best available technology for achieving compliance with the maximum contaminant levels for disinfection byproducts and with State law requiring the filtration of drinking water taken from a surface water source.

Under the consent decree, the Filtration Plant is to be constructed by March 1, 2029 and operational by July 1, 2029.

A copy of the consent decree and further information regarding WJWW's Rye Lake Filtration Plant Project can be found at <u>www.wjwwfiltration.org</u>.

AFFIDAVIT OF MAILING

STATE OF NEW YORK)) ss.: COUNTY OF WESTCHESTER)

Mary Polvere, having been duly sworn, deposes and says:

1. On November 7, 2024, I mailed a true and accurate copy of the Public Notice to

Consumers to the following entities at the addresses identified herein by depositing a true copy

thereof in a postage-paid envelope in an official depository under the exclusive care and custody

of the United States Postal Service within the State of New York.

Village of Larchmont 120 Larchmont Avenue, NY 10538 Attn. Justin Datino, Village Administrator

Veolia Water New York (Westchester Rate District #2) 2525 Palmer Avenue, NY 10801 Attn. John Telesco, Operations Manager

Southern Westchester BOCES 17 Berkley Drive, Rye Brook, NY 10573 Attn. Brendan Lyons, Ed.D., Chief Operating Officer / Deputy District Superintendent

Signed:

Print Name: Mary Polvere

Sworn to before me this 71 day of November 2024

Notary Publi

OLIVIA NAPOLITANO NOTARY PUBLIC, STATE OF NEW YORK Registration No. 4888928 Qualified in Westchester County Commission Expires April 06, 2027

MAMARONECK 309 MOUNT PLEASANT AVE MAMARONECK, NY 10543-9998 (800)275-8777

11/0//2024			01:15 PM
Product	Qty	Unit Price	Price
John Wooden	5	\$0.73	\$3.65
Grand Total:			\$3.65
Cash Change			\$10.00 -\$6.35

Preview your Mail Track your Packages Sign up for FREE @ https://informeddellvery.usps.com

All sales final on stamps and postage. Refunds for guaranteed services only. Thank you for your business.

Tell us about your experience. Go to: https://postalexperience.com/Pos or scan this code with your mobile device,

or call 1-800-410-7420.

UFN: 355005-0058 Receipt #: 840-51050036-2-6397270-1 Clerk: 15

10727600, 1186494

AFFIDAVIT OF PUBLICATION

State of Wisconsin County of Brown

being duly sworn, deposes and says she is the Principal Clerk of The Journal News, Division of Gannett Newspaper Subsidiary, publishers of following newspaper published in Westchester and Rockland Counties, State of New York, of which annexed is a printed copy, out from said newspaper has been published in said newspaper editions dated:

11/07/2024

Subscribed and sworn to before me this 07 day of November, 2024

Notary Public State of Wisconsin, County of Brown

Andai tutt Anthemalle Exp 1-7-25

KATHLEEN ALLEN **Notary Public** State of Wisconsin

Vestchester Joint Water Works Public Notice To Consumers and Owners/Operators of Public Water Systems That Purchase Water from Westchester Joint Water Works The following notice is being provided to all consumers and owners/operators of public water systems that purchase water from Westchester Joint Water Works (WJWW).

The WJWW has entered into a federal consent decree with the U.S. Environmental Protection Agency and New York State Department of Health that sets forth a schedule to build a Filtra-

Department or realth that sets form a schedule to boild a Paird-tion Plant for WJWW's Rye Lake water source. The consent decree provides for the installation of the best avail-able technology for achieving compliance with the maximum contaminant levels for disinfection byproducts and with State law requiring the filtration of drinking water taken from a surface water source.

Water source. Under the consent decree, the Filtration Plant is to be constructed by March 1, 2029 and operational by July 1, 2029. A copy of the consent decree and further information regarding WJWW's Rye Lake Filtration Plant Project can be found at WJWW's Rye Lake Filmans. Www.wiwwfiltration.org. Westchester Joint Water Works 1625 Marnaroneck Avenue Marnaroneck, New York 10543 (914) 698-3500

10727600

APPENDIX C

SUPPLEMENTAL ENVIRONMENTAL PROJECT

Extended Detention Basin Modifications

Preliminary Design Report

12.20.24

This project was undertaken in connection with the settlement of an enforcement action, United States v. Westchester Joint Water Works, taken on behalf of the U.S. Environmental Protection Agency under the Safe Drinking Water Act.

Consent Decree 24 Civ. 4783 Supplemental Environmental Project: Extended Detention Basin Modifications Preliminary Design

90388-006 December 20, 2024

This project was undertaken in connection with the settlement of an enforcement action, United States v. Westchester Joint Water Works, taken on behalf of the U.S. Environmental Protection Agency under the Safe Drinking Water Act.

Table of Contents

Exe	ecutiv	e Summary1
1.	Proje	ect Background and Goals1
	1.1	Non-Point Source Pollution in the NYCDEP Watershed1
	1.2	Kensico Stormwater Management Practices1
	1.3	Kensico BMP #752
2.	Exis	ting Conditions2-1
	2.1	Detention Basin Characteristics2-1
	2.2	Water Quality2-4
	2.3	Vegetation / Landscape6
	2.4	Weir Structural Condition
3.	Preli	minary Design
	3.1	Land Use
3.2 Hydrologic Evaluation and Sizing		Hydrologic Evaluation and Sizing3-2
		3.2.1 Permanent Pool Volume
		3.2.2 Extended Detention Weir Selection
	3.3	Structural Design Considerations
	3.4	Planting
4.	Reco	ommendation and Next Steps4-1
5.	Refe	erences5-1

List of Tables

Table 1. Land Use and Curve Number Change, 1997 vs. 2019	2
Table 2: Top Width of Weir vs. Detention Time Improvement	5

List of Figures

2
2
2
3
4
5
7
8
1
3
4
5
6

List of Appendices

Appendix A: Site Photos Appendix B: Original Basis of Design Report (1997) Appendix C: Existing Design Sheets Appendix D: As-Built Outlet Structure Diagram Appendix E: HydroCAD Appendix F: Proposed Planting Plan

List of Acronyms

Abbreviation	Definition
BMP	Best Management Practice
CN	Stormwater Curve Number
DIP	Ductile Iron Pipe
FAD	Filtration Avoidance Determination
NLCD	USGS National Land Cover Database
NURP	Nationwide Urban Runoff Program
NYCDEP	New York City Department of Environmental Protection
NYSDEC	New York State Department of Environmental Conservation
NYSDOT	New York State Department of Transportation
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
WWLW	Westchester Joint Water Works
WQv	Water Quality Volume
WSE	Water Surface Elevation

Executive Summary

The report focuses on enhancing the stormwater performance of New York City Department of Environmental Protection's (NYCDEP) BMP #75, located on New York State Department of Transportation (NYSDOT) property between I-684 and Purchase Street. This project is part of the Westchester Joint Water Works (WJWW) Consent Decree to construct the Rye Lake Water Filtration Plant and improve water quality in the Kensico Reservoir watershed.

WJWW has entered into a Consent Decree to construct the Rye Lake Water Filtration Plant to maintain the health and safety of its customers and comply with various regulatory requirements. As part of this decree, WJWW has agreed to conduct a Supplemental Environmental Project to enhance nearby stormwater management and improve water quality in the Kensico Reservoir watershed.

The Kensico Reservoir is critically important for maintaining water quality for New York City and Westchester County. NYCDEP has been addressing nutrient-based non-point source pollution in their watershed for over 25 years through stormwater projects. Phosphorus runoff, in particular, poses significant concerns, contributing to the degradation of many of New York's waters. NYCDEP installed forty five stormwater best management practices (BMPs) in the late 1990s to reduce fecal coliform, turbidity and phosphorus in Kensico Reservoir. Regular inspections and maintenance are conducted to ensure these facilities operate effectively.

Kensico BMP #75

BMP #75 is a 0.5-acre extended detention basin that discharges into the Rye Lake section of the Kensico Reservoir. This preliminary design proposes potential modifications to BMP #75 aimed to increase its pollutant removal efficiency. Grab sample results indicate that runoff from BMP #75 does not have high levels of total phosphorus, total nitrogen, or total suspended solids, suggesting the pond is providing some level of treatment.

The concrete comprising BMP #75's weir retaining wall remains in satisfactory condition, with minor surface spalling and shrinkage cracking observed. Immediate repair is not required, but loose concrete should be removed and replaced with a concrete repair material.

Preliminary Design

The design goal is to improve phosphorus retention and reduce turbidity and bacteria by modifying the outlet structure. The existing permanent pool, defined by the 120-degree V-notch weir at +360.50, is optimally sized for enhanced phosphorus storm criteria. The proposed modifications would maintain the current elevation of the permanent pool and adjust the BMP's weir plate to a smaller opening with a larger 1-ft wide top width, forming a compound v-notch weir with a 4-in by 3-in rectangular slit. This would provide extended detention time for additional pollutant removal.

1. Project Background and Goals

WJWW has entered into a Consent Decree to construct the Rye Lake Water Filtration Plant to maintain the health and safety of WJWW customers and to comply with a United States Environmental Protection Agency (USEPA) Administrative Order, a New York State Supreme Court Order, and the USEPA and New York State Sanitary Code surface water filtration requirements. As part of this Consent Decree, WJWW has agreed to conduct a Supplemental Environmental Project to enhance nearby stormwater management and improve water quality in the Kensico Reservoir watershed.

1.1 Non-Point Source Pollution in the NYCDEP Watershed

The Kensico Reservoir, located in Westchester County, is the terminal reservoir for New York City's Catskill/Delaware water supply. Because this reservoir provides the last impoundment of Catskill/Delaware water prior to entering the City's distribution system, protection of this reservoir is critically important to maintaining water quality for the City and water consumers in Westchester County.

For over 25 years, the NYCDEP has addressed nutrient-based non-point source pollution in their watershed through implementation of stormwater projects. Nutrients including nitrogen and phosphorus pose significant concerns in lakes and estuaries, contributing to the degradation of many of New York's waters. As a result, Kensico Reservoir is subject to a proposed guidance value of 15 μ g/L of phosphorus.

Phosphorus runoff has affected the quality of several natural lakes in New York, such as the Finger Lakes and Lake Champlain, which are prone to eutrophication due to phosphorus loading. In the New York City Reservoir system, phosphorus is a critical parameter. In 1999, NYCDEP established water quality guidance values for phosphorus in city drinking water reservoirs. A source-water phosphorus guidance value of 15 μ g/l has been proposed for seven reservoirs (Kensico, Rondout, Ashokan, West Branch, New Croton, Croton Falls, and Cross River) to protect them from use-impairment due to eutrophication, while other reservoirs will follow the state-recommended guidance value of 20 μ g/l. For these reasons, measures to improve phosphorus retention and treatment by BMPs surrounding Rye Lake are of interest (NYCDEP, 2019).

1.2 Kensico Stormwater Management Practices

In the late 1990s, NYCDEP installed 45 stormwater best management practices (BMPs) under its Filtration Avoidance Determination (FAD), effectively reducing fecal coliform and turbidity in Kensico Reservoir. To maintain its FAD, one of NYCDEP's goals is to ensure the proper operation and maintenance of Kensico watershed stormwater management facilities through regular inspections. These inspections help identify repair needs to optimize pollutant removal efficiency. NYCDEP ensures that these facilities receive necessary maintenance, including the removal of accumulated sediment and debris.

1.3 Kensico BMP #75

One of NYCDEP's Kensico stormwater practices, BMP #75, has been identified for potential modifications to increase its pollutant removal efficiency. BMP #75 is a 0.5-acre extended detention basin on NYCDEP property between I-684 and Purchase Street. It discharges into the Rye Lake section of the Kensico Reservoir (**Figure 1**). While this site has been regularly maintained by NYCDEP and is operating effectively, some potential modifications could be considered to further enhance the water quality protection benefits of this facility. WJWW's Supplemental Environmental Project aims to evaluate and design recommendations to improve the detention performance of the existing stormwater management pond for better phosphorus removal

Figure 1: Location of Existing Extended Detention Basin (BMP #75)

2. Existing Conditions

A field visit to BMP #75 was conducted on October 24, 2024 to obtain site information, document the condition of the overflow structure, characterize invasive species, and identify any obvious structural concerns. During the field assessment and the concurrent knowledge exchange with DEP on site, the following information was collected:

- 360-degree photos
- Photographs (select photos in **Appendix A**)
- Measurements of the concrete retaining wall and V-notch weir
- Basis of Design Report from original design (1997) See Appendix B

The following items were also provided from DEP digitally:

- Dam Inspection Report, May 13, 2022
- BMP 75 Factsheet
- Kensico Detention Basin Volumes
- Design plan sheets S-14, C-59, C-60, and C-61, circa September 1997 See Appendix C
- Grab sample results from Site E11 January 2018 to November 2024
- Continuous flow results from Site E11 January 2018 to November 2024

2.1 Detention Basin Characteristics

The original design for BMP #75 called for a principal spillway comprising a 25-foot-long rectangular weir retaining wall with a crest elevation of 361.50 ft. This crest elevation was the "extended detention elevation" in the design. A sketch of the existing weir wall is shown in **Appendix D**. The low-flow discharge in the original design was an 8-in ductile iron pipe (DIP) bored through the wall, which was intended to be controlled with a gate valve with a stem operator extension at invert 358.00 ft. This pipe in the original design is highlighted red in the spillway cross section, which was never installed (**Figure 2**).

By interpolating the contours from the design plans and reviewing the stage-storage design of the 1997 Basis of Design Report, a stage-storage curve (**Figure 3**) was developed to represent the existing conditions.

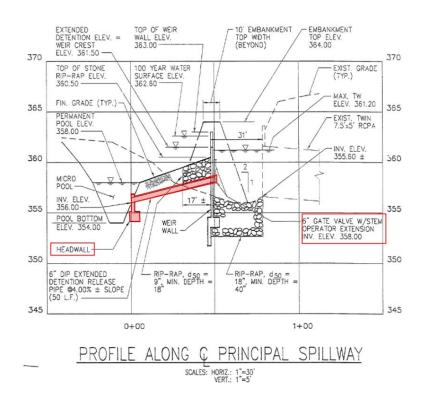


Figure 2. Spillway Profile from Sheet C-60 of Original Design.

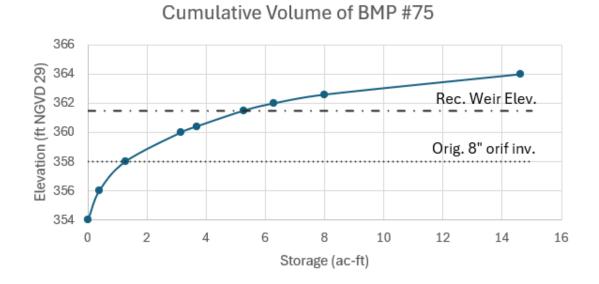


Figure 3. BMP #75 Stage-Storage Curve

During the October 24, 2024, field visit, the as-built condition showed that the pond was modified from this original design. Instead of an 8-in DIP pipe, a 120-degree steel plate V-notch weir was mounted to a cutout in the rectangular weir wall (**Figure 4** and **Appendix D**). While no vertical datum-based survey shots were taken on the weir wall, the rectangular weir wall's crest appeared to match the original design (361.50 ft). Other elevations, such as the V-notch invert and top of concrete weir rise, were calculated from field measurements from this basis.

Figure 4: BMP #75 Installed Condition with V-Notch Weir

2.2 Water Quality

DEP provided grab sample results from 195 analytes from January 2018 to November 2024, totaling 1,723 data points at the discharge of BMP #75 into Kensico Reservoir, sample site E11 (**Figure 5**). Hazen selected analytes relevant to turbidity, eutrophication, and nutrient pollution to gauge the magnitude of the concentrations discharging from BMP #75. Plots of those are shown in **Figure 6**. The data indicates that runoff from this monitoring point does not have high levels of total phosphorus, total nitrogen, or total suspended solids, suggesting the pond is discharging relatively low concentrations of these pollutants. This signals that the BMP is providing some level of treatment.

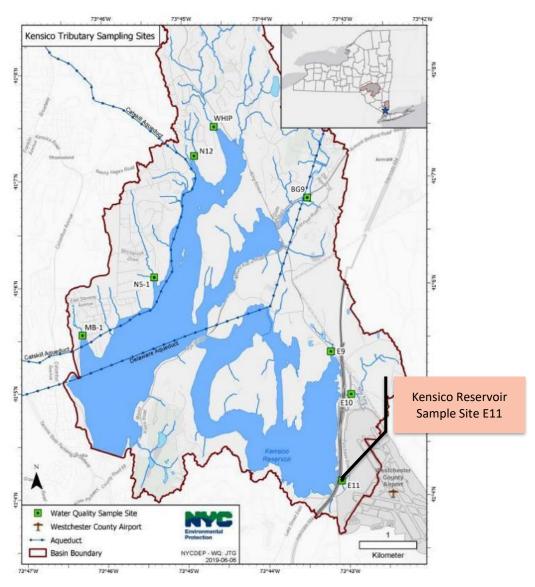
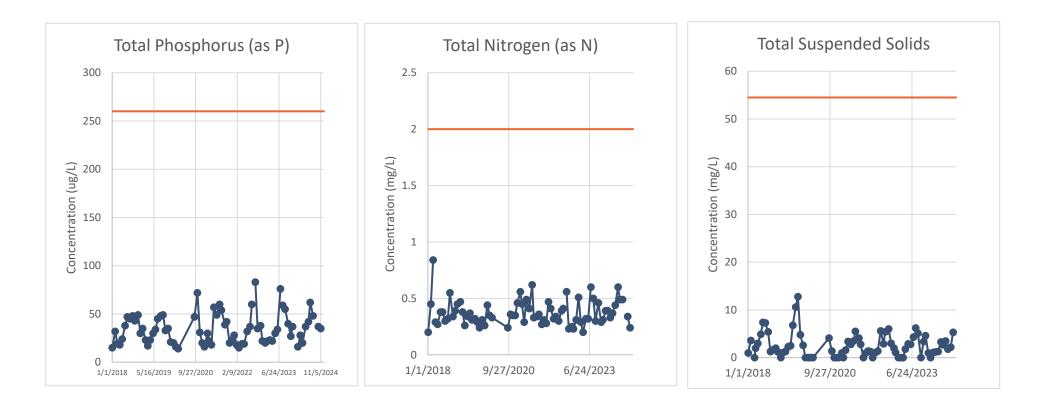



Figure 5: Kensico Reservoir Sample Sites

Consent Decree 24 Civ. 4783 Supplemental Environmental Project: Extended Detention Basin Modifications Preliminary Design

Figure 6. Grab Sample Results from Site E11

Note: The benchmark line in orange in each plot is the national median stormwater runoff concentration from the federal government's 1983 Nationwide Urban Runoff Program (NURP) found in Table 2.1 of the NYSDEC Stormwater Management Manual. The concentrations of these three pollutants downstream of BMP 75 are significantly lower than raw stormwater concentrations.

2.3 Vegetation / Landscape

The perimeter of the BMP has limited invasive species, with only a few apparent including:

- Multiflora rose (*Rosa multiflora*)
- Small patches of Phragmites (*Phragmites* spp.)
- Russian olive (*Elaeagnus angustifolia*)
- Some mugwort (Artemisia vulgaris) along the roadway
- Bittersweet (*Celastrus scandens*), greenbriar (*Smilax rotundifolia*), and poison ivy (*Toxicodendron* spp.) vines on some of the trees

Field visit documentation shows large stands of Phragmites upstream of the BMP, between the airport and US-120. None of the vegetation observed above appeared to represent the dominant cover type and could be managed by limited invasive removal proposed.

2.4 Weir Structural Condition

Based on the observations during the field assessment, the concrete comprising the weir retaining wall remains satisfactory and in sound condition. The concrete surface was solid and no evidence of interior or exterior attack was observed. The concrete deterioration observed consisted primarily of surface spalling, minor shrinkage cracking, and spalling due to movement at expansion and construction joints. No evidence of reinforcement corrosion was observed in the accessible areas of the wall, including the spalled sections.

The most extensive spalling was observed at vertical expansion and construction joints in the wall (**Figure 7**). At these locations, movement occurs due to temperature fluctuation and freeze-thaw cycles inducing this deterioration. Although immediate repair is not required, the loose concrete caused by the spalling should be removed and replaced with a concrete repair material. At the same time as this repair, the expansion joints should be cleaned, and new material should be installed to enable the joint to move as intended without binding and causing further spalling.

Figure 7: Spalling at Construction Joints

At one of the joint locations, the spalling has exposed a rod that appears to be a dowel extending across the expansion joint (**Figure 8**). This rod was likely rigidly embedded on one side of the joint and allowed to move in plane on the opposite side. The spalling is caused by the binding of the joint, either from insufficient expansion joint thickness or improper dowel installation. Since a metal member is exposed, this area should be prepared with a concrete repair material to cover the metal and reduce the risk of corrosion and further deterioration.

Westchester Joint Water Works Consent Decree 24 Civ. 4783 Supplemental Environmental Project: Extended Detention Basin Modifications Preliminary Design

Figure 8: Exposed Rod at Expansion Joint

Minor cracking was observed at various locations with efflorescence present. These cracks should be sealed with a chemical injection grout to prevent moisture intrusion and potential corrosion. A potential cold joint was also observed with minor efflorescence. Though repair is not urgent, the joint should be sealed in the same manner as the cracks.

3. Preliminary Design

3.1 Land Use

An examination of any significant land use change since the 1997 design was performed to determine if the hydrologic calculations would be substantially altered. The USGS National Land Cover Database (NLCD) was analyzed from 2000 to 2019 to identify major land use changes within the watershed boundary delineated in 1997 (see **Figure 9**). The figure shows percent of the watershed as the NLCD land cover classifications in the legend. Since "forest" is the most analogous classification between this NLCD dataset and the curve number design land uses, the percent reduction of that land use in NLCD was assumed in the curve number land use table. Since 2019, area classified as forest has decreased by 22% (18,597 m² to 145,228 m²). This same percent reduction was applied to the 1997 land use classification, which used Forest, Institutional, and Transportation cover types. As a result, since 1997, the forest area has decreased by 3.2 acres (out of the total 10-acre drainage area), reclassified as institutional and transportation land uses. Based on this analysis, the stormwater curve number (CN) did not appreciably change since 1997 (**Figure 9** and **Table 1**). The CN is a numerical value used to estimate the amount of runoff

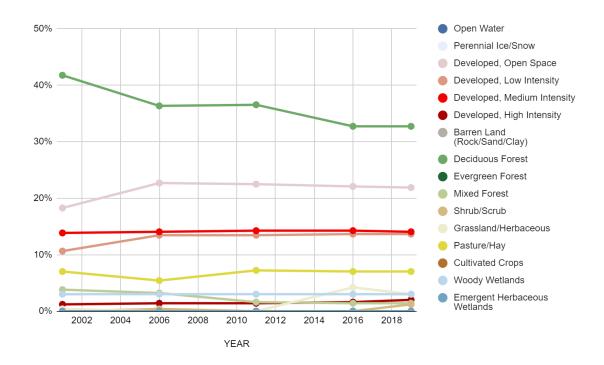


Figure 9. Land use change, 2000 to 2019 for BMP #75 watershed

Source: NLCD, ModelMyWatershed website

generated from a given rainfall event based on the land cover, soil type, and hydrologic condition of a specific area; essentially, it measures how much water will infiltrate into the ground versus how much will run off as surface water. The higher the CN, the more runoff will occur per unit of rainfall.

Land Use	HSG	Curve Number (CN)	Area, 1997 (acres)	Area, 2019 (acres)	Difference (acres)
Forest	В	55	4.8	3.76	-1.04
Forest	С	70	10	7.84	-2.16
Institutional	С	79	7.2	7.45	0.25
Transportation	В	70	26	26.91	0.91
Transportation	С	79	58	60.04	2.04
Total			106	106	0
Weighted CN			74.9	75.2	

Table 1. Land Use and Curve Number Change, 1997 vs. 2019

3.2 Hydrologic Evaluation and Sizing

The design goal of the hydrologic evaluation was to evaluate the characteristics of the pond based on the design plans and propose modifications to the outlet structure that improve phosphorus removal. For this project, the following two characteristics represent the design criteria for improving phosphorus retention:

- 1. Permanent pool volume
- 1. Center-of-mass detention time between the inflow and outflow hydrographs

3.2.1 Permanent Pool Volume

Per the NYSDEC *Stormwater Management Manual*, ponds and wetlands draining to reservoirs should "encourage the use of a large permanent pool to improve sediment and phosphorus removal" and "promote long detention times to encourage bacteria removal." (New York State Department of Environmental Conservation, 2022, p. 12).

The permanent pool of water, defined by the maximum water surface elevation (WSE) at the lowest pond outlet structure, is typically associated with a specific storm size known as the Water Quality Volume (WQ_v). The original pond's WQ_v correctly used the 1.5-inch design storm depth, which, based on the pond's location in New York, conforms to Figure 4.1 in the *Stormwater Management Design Manual* (New York State Department of Environmental Conservation, 2022).

More rigorous design criteria were sought for the proposed modifications to BMP #75. For watersheds requiring enhanced phosphorus removal, NYSDEC recommends sizing the Water Quality Volume (WQ_v) larger than the "typical" BMP. Enhanced phosphorus removal in ponds can be achieved by sizing it using the 1-year, 24-hour storm (2.82 inches) instead of the 1.5-inch storm. According to the NYSDEC manual,

extended detention wet ponds are required to have a minimum permanent pool volume that is equivalent to 50% of the WQ_v and a maximum extended detention volume equal to the remaining 50% of the WQ_v .

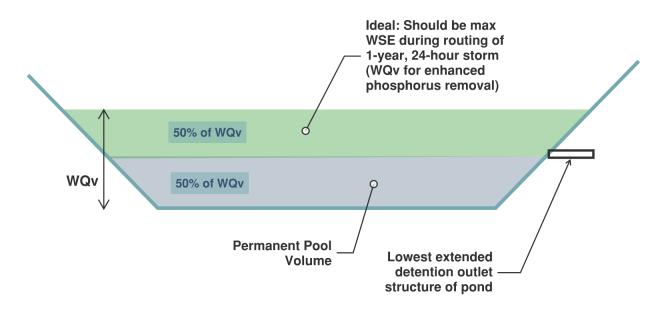


Figure 10. Distribution of Permanent Pool Volume and Extended Detention Volume

The runoff volume of the 1-year, 24-hour storm for the watershed is 7.47 acre-feet. Per the guidance summarized above, an "enhanced phosphorus removal" extended detention pond should have a permanent pool volume of 50% the 1-year runoff volume, or 3.73 acre-feet. The cumulative storage of the existing pond just before any outflow, at the invert of the V-notch weir, is 3.80 acre-feet, which meets this 50% criteria. The second criterion is that the extended detention volume above the permanent pool should be 3.80 acre-feet. The validation of this criterion required the iteration of a new weir structure to determine the WSE of the 1-year storm above the lowest outlet (see the green layer of water shown in Figure 10).

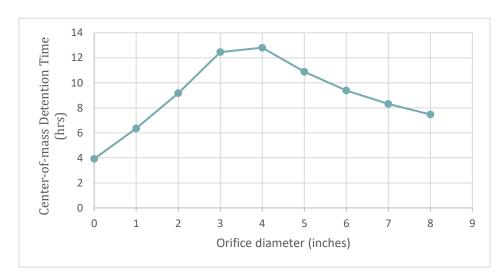
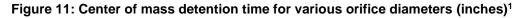
The analysis found that the existing permanent pool, defined by the 120-degree V-notch weir at +360.50, is optimally sized for enhanced phosphorus storm criteria. It was recommended to maintain the current elevation of the permanent pool.

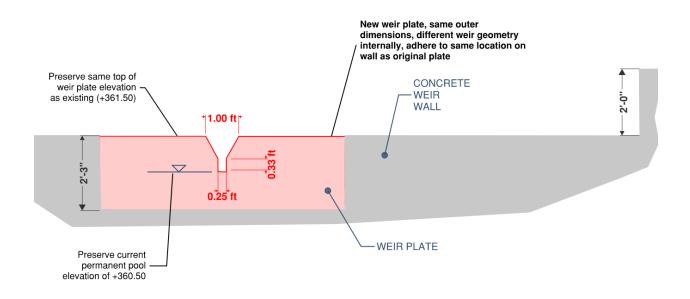
3.2.2 Extended Detention Weir Selection

The second design criteria, detention time, is controlled by the extended detention weir selection. It was assumed that the overflow elevation should remain at +360.50 to maintain the required permanent pool volume. Lowering an outflow elevation via an orifice could increase the detention time but would not meet the permanent pool volume design criteria. To increase detention time, circular orifices were tested in HydroCAD for the 1-year storm (see WQ_v justification above) to find the optimal size.

For this analysis, the center of mass method was used to calculate "detention time." This method calculates the detention time by determining the difference between the center-of-mass of the inflow and

outflow hydrographs. The larger this value, the more the pond detains the inflow. After evaluating various orifice sizes, it was determined that a **four-inch diameter orifice is optimal for maximizing the detention time of the existing pond** (

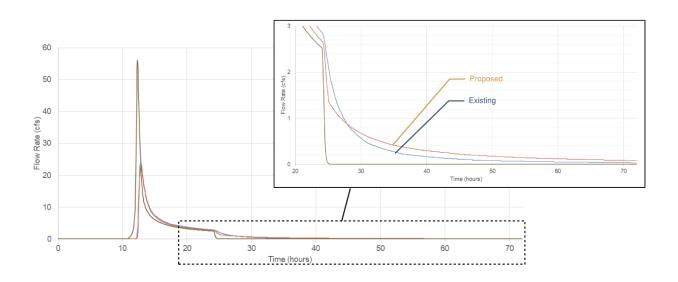




Figure 11). See Appendix E for HydroCAD output.

It was preferable to modify the existing weir plate to minimize impact on the attached concrete weir wall. The four-inch diameter opening was changed to a rectangular shape with the same area. To restrict outflow and increase detention time, this smaller opening was combined with a larger weir shape (1-ft wide top width) to create a compound v-notch weir with a 4-in by 3-in rectangular slit (**Figure 12**). Maintaining the existing weir top width of 3.75 feet with the addition of a 4-in by 3-in slit at the bottom was considered. However, modifying the top width from 3.75 feet to 1.00 foot could substantially increase the detention time.

¹ The zero-inch orifice represents the existing condition of the pond (i.e. the v-notch weir without an additional orifice).

Westchester Joint Water Works Consent Decree 24 Civ. 4783 Supplemental Environmental Project: Extended Detention Basin Modifications Preliminary Design



Top width (ft)	Det. Time (min)	Peak WSE (1-yr)	With New Slit Weir, % Improvement on Detention Time
3.75 ²	302	361.89	28%
3.00	315	361.90	34%
2.75	319	361.91	36%
2.50	323	361.91	37%
2.25	328	361.91	39%
2.00	333	361.92	42%
1.75	339	361.92	44%
1.50	345	361.92	47%
1.25	352	361.93	49%
1.00	359	361.93	53%

Table 2: Top Width of Weir vs. Detention Time Improvement

Figure 13 shows the inflow of the 1-year storm and the outflows of the existing and proposed ponds. At lower flows (zoomed-in view) the proposed design increases the pond's drainage lag time for this storm compared to the existing pond.

² Existing V-notch weir top width

Figure 13. Inflow (green) vs. Outflow Hydrographs for Existing (Blue) and Proposed (Orange) Conditions

To ensure the modifications wouldn't negatively impact the 100-year flow, the 100-year storm was modeled through the structure. The existing WSE for the 100-year storm is +363.67, and the proposed is +363.71, showing an acceptably minimal difference. Since a max WSE of +361.93 did not hinder the outlet structure's performance for larger, less frequent storms (up to the 100-year event), the proposed compound V-notch weir plate shown in Figure 12 offers the most effective detention among the tested ranges,

3.3 Structural Design Considerations

The existing weir plate remains in satisfactory condition. However, due to the proposed geometrical revisions required, the preferred approach for accommodating the revised geometry is to fabricate a new weir plate. The method for attaching the plate to the structure will be detailed in later design phases. If anchors were utilized for attachment and they remain in satisfactory condition, the new plate can be fabricated to align with the existing anchor spacing, allowing for the reuse of the current anchors.

If the existing anchors cannot be reused or exhibit signs of deterioration, new adhesive anchors should be installed to secure the new weir plate. In this scenario, the existing anchors should be removed and burned back, and the resulting void should be filled with an epoxy resin binder. The new anchors' location should be adjusted to avoid the positions of the existing anchors. The means of attachment cannot be determined without verifying the current attachment methods. During the initial site assessment, access was insufficient to determine the current attachment approach.

A trash rack or similar device will be detailed in later design phases to ensure the weir geometry remains consistent during different flow conditions and reduces operations and maintenance requirements for the pond's outflow performance.

3.4 Planting

BMP #75 is located 1,000 feet from the runways at Westchester County Airport. WJWW recently consulted with a Federal Aviation Administration (FAA) Qualified Airport Wildlife Biologist for the design of their nearby Rye Lake Water Filtration Plant. Based on this consultation, the following recommendations are pertinent to re-landscaping BMP #75 due to its proximity to the airport:

- 1. No vegetation plantings other than what is required by US Army Corps of Engineers (typically cattail (*Typha* latifolia) and bulrush (*Scirpoides holoschoenus*).
- 2. Absolutely no ornamentals or aesthetic plants that do not serve a biological purpose for water filtration.
- 3. Limit any trees that will be planted. Evergreens are preferred over deciduous and fruiting trees.
- 4. Limit grass. Any grass that must be planted should be red tall fescue (*Festuca rubra*) and should be maintained at 6-10 inches per FAA Advisory Circular 150-5300-13A.

While these recommendations were not related directly to this project, it is expected that they represent analogous situations of plantings near Westchester County Airport, such as any modifications to BMP #75.

The permanent pool and semi-frequently inundated water surface elevation (equivalent to a 1-year storm) were analyzed for the replanting of non-invasive species. This conforms to FAA guidance on similar projects to prevent the attraction of birds. **Appendix F** shows the two replanting zones that result:

- Emergent Marsh (Elev. 360.00 361.00)³
 - Soft stemmed bulrush (Scirpus Validus)
 - Common three-square (Scirpus pungens)
 - Soft rush (Juncus effusus)
 - Hard stemmed bulrush (Scirpus acutus)
- Shallow Marsh (Elev. 361.00 362.00)
 - Common three-square (Scirpus pungens)
 - Soft rush (Juncus effusus)
 - o Greene's rush (Juncus greenei)
 - Fox sedge (Carex vulpinoides)

Based on the site visit, several woody plants were identified around the berm / slope of the embankment near the outlet structure. Per NYSDEC stormwater manual: Woody vegetation shall not be planted or allowed to grow within 15 ft of the toe of any berm or slope and 25 ft from the principal spillway structure. Therefore, the design includes a recommendation to remove these plantings to ensure the embankment's long-term safety and stability. Specific plants to be removed will be determined after a detailed site survey.

³ Elevation range spans the permanent pool, where maximum biological interaction is occurring for emergent vegetation during non-rain events.

4. Recommendation and Next Steps

The preliminary design recommends maintaining the current elevation of BMP #75's permanent pool because it is optimally sized for enhanced phosphorus and sediment removal. The design recommends increasing detention time in the BMP by modifying the outlet weir plate. The modified weir plate will have a smaller opening with a larger weir (1-ft wide top width) to create a compound v-notch weir with a 4-in by 3-in rectangular slit (**Figure 12**). The increased detention time will encourage additional bacteria removal. The design includes a recommendation to remove woody plantings near the embankment to maintain its long-term safety and stability, limited invasives removal, and replanting of native, non-fowl attracting species along the water line to promote pollutant removal.

As a next step, WJWW will share this preliminary design with NYCDEP for their review and consideration, since this infrastructure proposed for modification is a component of the Kensico Watershed management and NYCDEP's FAD.

5. References

AACE International. (2012). Cost Estimate Classification System - As Applied for the Building and General Construction Industries: TCM Framework: 7.3 - Cost Estimating and Budgeting. AACE International.

Lewallen, A., & Visone, L. (2017). Cost Estimation Methods. Atlanta, GA: BC/DHA JV.

New York State Department of Environmental Conservation. (2022). Stormwater Management Design Manual. Albany, NY.

NYCDEP. (2019). New York City Watershed Rules and Regulations. 1997, amended November 29, 2019. Rules and Regulations for the Protection from Contamination, Degradation and Pollution of the New York City Water Supply and its Sources. RCNY Title 15, Chapter 18. Retrieved from

https://www1.nyc.gov/assets/dep/downloads/pdf/watershedprotection/regulations/rules-and-regulations-of-the-nycwater-supply.pdf

Stroud Water Research Center. (2017). Model My Watershed [Software]. Retrieved from https://wikiwatershed.org

Appendix A: Site Photos

Photo 1. Outlet structure (25 foot concrete weir) with 120-degree steel v-notch sharp crested weir

Photo 2. Outflow over 120-degree v-notch weir

Photo 3. Outlet structure wall (downstream), some spalling at joints evident

Photo 4. Outlet structure wall (upstream) showing exposure of dowel rod across expansion joint

Appendix B: Original Basis of Design Report (1997)

Kensico Watershed

Stormwater Best Management Practices

E-11 Site 74 and 75

Extended Detention Pond (with Stormwater Wetland) and Inflow Stabilization

Preliminary Computations

249A

Center for Watershed Protection Hazen & Sawyer

July 1997

NORTHART ×438 -SERVOIR 377 684 F > Forest I > Institutional unmarked > Transportation Shaded > B soils Unshaded > C soils LAKE 1"= 500" × 387 386 414004 35 36 STREET 394 6 Ð C 0 C 4 Z U × 422

	PEAK DISCHARGE	BMP 75		and the second
JOB:	PERMANENT CO	NDITION		pk
DRAINAGE AREA NAME:	PERMANENT		CN from	15-Jan-97
COVED DESCENT	SOIL NAME		TABLE 2-2	AREA
COVER DESCRIPTION	SOIL NAME	B		(In acres)
forest		C	55	4.80 Ac.
forest		C	70	10.00 Ac.
institutional	the second s	В	70	7.20 Ac. 26.00 Ac.
transportation transportation	and a second	C	79	58.00 Ac.
transportation	and the second s			30.00 AC.
1100 Sec. 2010		,		
The second second	Il ground in the left			
Contraction (Contract)	WIGHT CONTRACTOR			
towney advert	Wanted William			
	Water Constraint			
B.1985	train U.sti		N	
A State of State	ALL ALL ALL AND A TAXABLE		AREA SUBTO	106.00 Ac.
Time of Concentration	Surface Cover		Flow Length	Slope
2-Yr 24 Hr Rainfall = 3.3 In	Cross Section	Wetted Per	Avg Velocity	Tt (Hrs)
Sheet Flow	dense grass	'n'=0.24	150 Ft.	3.00%
	the particular of state		San San San San San	0.28 Hrs
The state of the second	6	1. 20 1.2.		
and the second s	a second a second	and the second second		
N.973	0.9835			
Shallow Flow	UNPAVE)	500 Ft.	4.00%
Shanow How			3.23 F.P.S.	0.04 Hrs.
74.04 . 750	0.0 10 201			
Channel Flow (a)		'n'=0.030	1800 Ft.	3.00%
ydraulic Radius = 0.74	7.0 SqFt	9.5 Ft.	7.02 F.P.S.	0.07 Hrs.
(b)	7.0 04.1	'n'=0.013	25 Ft.	1.00%
ydraulic Radius = 0.74	7.0 SqFt	9.5 Ft.	9.35 F.P.S.	
	7.0 0411	'n'=0.030		
(c)	7.0 SqFt	9.5 Ft.	5.73 F.P.S.	
draulic Radius = 0.74		Total Sheet		Total Channel
Total Area in Acres =	106.00 Ac.		 Operation and the second s	Flow =
Weighted CN =	75	Flow =	Flow =	
me Of Concentration =	0.41 Hrs.	0.28 Hrs.	0.04 Hrs	. 0.09 Hrs.
Pond Factor =	1	INFALL TYP	and a product the second	
	Precipitation	Runoff	Qp, PEAK	TOTAL STORM
STORM	(P) inches	(Q)	DISCHARGE	Votumes
	2.7 In.	0.8 In.	65.2 CF	\$ 296,432 Cu. Ft
1 Year			102.4 CF	
2 Year	3.9-In	1.2 ln	167 CF	
5 Year	4.2 ln.	1.8 ln.		
10 Year	5.1 In.	2.5 tn.	238 CF	
25 Year	5.6 ln.	2.9 ln.	279 CF	
50 Year	6.3 In.	3.5 In.	340 CF	S 1,361,797 Cu. 1
100 Year	7.2 ln.	4.3 In.	418 CF	S 1,664,607 Cu
100 1001	1.4 111.		and a second sec	
				20 RUN

D

JOB TR-20		F	ULLPRINT		NOPLOT	S
TE	Kensico	Watershed pur	Do N.E. Cita	TED Basin 05/	97 RAC	
The second	Ultimat	te Conditions H	Ivdrology			
5 AFL 8	and the second s	0.25	-1-1-010-91		TRUCT	
8	0.0	0.0025	0.005	0.0075	0.01	
8	0.0125	0.015	0.0175	0.02	0.0225	
8	0.026	0.0285	0.03	0.033	0.036	
8	0.039	0.042	0.0455	0.049	0.052	
8	0.055	0.059	0.063	0.0665	0.07	
	0.0745	0.079	0.083	0.087	0.092	
8	0.097	0.1045	0.112	0.1195	0.127	
8	0.1355	0.144	0.153	0.163	0.1735	
8	0.185	0.1965	0.210	0.225	0.242	
8	0.262	0.287	0.32	0.416	0.611	
8	0.689	0.7195	0.743	0.762	0.779	
8	0.793	0.806	0.8185	0.829	0.84	
8	0.849	0.8585	0.867	0.8755	0.886	
8	0.8935	0.90	0.907	0.911	0.916	
8	0.92	0.9245	0.929	0.9325	0.936	
8	0.940	0.944	0.947	0.951	0.954	
8	0.957	0.9605	0.963	0.9665	0.969	
8	0.9725	- 0.975	0.9775	0.981	0.9835	
3	0.986	0.9885	0.991	0.9935	0.996	
3	0.9985					
ENDTBL						
RUNOFF 1	1	2 0.166	75.0	0.41	10 (001
ENDATA	-	2 0.100	15.0	0.11		
INCREM 6		0.1				
JIT 7	1	1 0.0	1 5	1.0	72	1 01
	1	1 0.0	1.5	1.0	1 4 .	
ENDCHP 1						1 02
COMPUT 7	1	1 0.0	3.3	1.0	7 2 1	1 02
ENDCMP 1						
COMPUT 7	1	1 0.0	4.2	1.0	72	1 03
ENDCMP 1						
COMPUT 7	1	1 0.0	5.0	1.0	72 1	1 04
ENDCMP 1		1				
COMPUT 7	1	1 0.0	7.2	1.0	7 2 1	1 05
NDCMP 1		2 010				
NDJOB 2						

TR-20 INPUT FILE FON TYPE III RAINFALL DISTAIBUTION

TR20 XEQ 7/09/97 REV 09/01/83

SEV

Kensico Watershed BMPs N-5 Site 37 ED Basin 05/97 RAC Oltimate Conditions Hydrology

SUN TABLE 1 - SELECTED RESULTS OF STANDARD AND EXECUTIVE CONTROL INSTRUCTIONS IN THE ORDER PERFORMED (A STAR(*) AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH A OUTPOTTER AFTER THE PEAK DISCHARGE TIME AND RATE (CFS) VALUES INDICATES A FLAT TOP HYDROGRAPH

STRUCTURE	STANDARD CONTROL	DRAINAGE	RAIN TABLE	ANTEC			PRECIPITAT	NOI	RUNOFF		PEAK DIS	CHARGE	5 ·
ID	OPERATION	AREA (SQ MI)	ł	MOIST	TIME INCREM (HR)	BEGIN (HR)	AMOUNT (IN)	DURATION (HR)	AMOUNT (IN)	ELEVATION (PT)	TIME (HR)	RÁTE (CFS)	RATE (CSM)
ALTERNATE STRUCTURE 1	1 STO RUNOFF	ORM 1 .17	7	2	.10	.0	.00	24.00	.17		12.59	7.60	15.0
ALTERNATE STRUCTURE 1	1 STO RUNOFF	RM 2 .17	7	2	.10	.0	.00	24.00	1.16		12.43		45.8
ALTERNATE STRUCTURE 1	1 STOP RUNOFF	3 .17	7					112/6			12.45	84.97	511.9
ALTERNATE	1 STOR		/	2	.10	.0	.00	24.00	1.81		12.42	136.11	820.0
STRUCTURE 1 ALTERNATE	RUNOFF	.17	7	2	.10	.0	.00	24.00	2.44		12.42	184.75	1113.0
COMPANY AND	1 STORM RUNOFF	.17 -	7	2	.10	.0	.00	24.00	4.31		12.41	326.38	1966.1

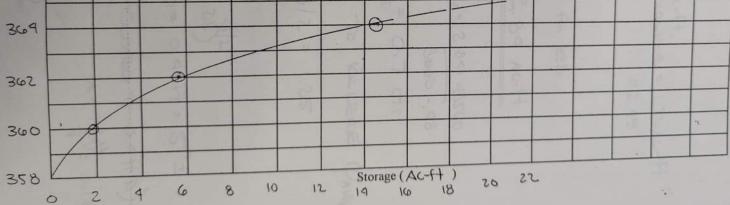
QUITTLT

JOB 1 SUMMARY

IYPETT

LAINPOLL DIST.

PAGE 7


SITE 75 E.D. PASIN JULY '97 RAL D.A = 106 AL %I= 91.2(.3) / 106 = 25.8 Ru= 0.05+ 0.000 (25.8) = 0.28 100 SHEETS 200 SHEETS WQU = 1.5" (0.28) (104 NL) / 12"1Ft = 3.71 ALFT FOREBAY TARGET VOLUME 22-142 AMPAD = 0.1" (106 AC/ 12"/A) = 0.88 AC-A. FOR SHALLOW MANSH WETLAND DESIGN DECP POOL = 60-70% WANT 2 NOL 1-) NOL IN HIGH MANSH = 10-15% YOU IN LON MA-SH = 5-10% SA 11 DUUP POOL = 450 10 SA IN HIGH WANSH 2 25 % SA 1. LOW MANN 225% SEE AREA-ELOV-STOMAGE - DATA For PROVIDED STORAGE (S.A.

VOLUME AND AREA OF TUM. POOL and the second the second Permanent Pool Area-Volume Data Area - Elevation - Storage Data - for Stormwater Wetlands Elevation Area Area (MSL) Average (in²) Depth Volume (ft²) ∑ Volume Area ∑ Volume (ft) Percent of (ff?) Surface Area (ft²) (ff?) (ac-ft) Total Pool of Pool Volume (%) 358.0 (acres) 33.31 29979 DA/SA = TOTAL PERM. POR S.A. = ForeBAY 207% 0.69Ac. 354 Lol 5.08 4572 356 7.44 6696 5634 2 11,268 358 11,268 0.26 11.11 ceee 8398 16.635 2 27.963 0.64 52% 0.23 AL 33% Pool 1.99 1791 356 3.92 3528 2660 2 5313 5319 358 0.12 6.09 5981 4505 2 9009 19328 0.33 28% 0.13AL (19%) 2 DEEP Pox E 0.97 AL-H 80% Area - Elevation - Storage Data - for Stormwater Wetlands Elevation Area Area Average Depth Volume ∑ Volume Σ. Volume Percent of Surface Area (MSL) (in²) (ft²) (ft') Area (ft) (ft') (ac-ft) Total Pool of Pool (ff2) Volume (%) (acres) HIGH 4"(.35) 2320 2320 4% 23% 7.81 7029 ANG 0.05 OK 357.5 HRAMM 0.20 25% OK AJ414"(1.17) 16% 8740 8740 Low 7170 356.8 8.30 1unesH 100% 100% 1.22 TOTAL You. Zi SA = 25,975

Elevation - Storage Data

ABOVE PERMANENT

Elevation	Area		1	1		1.00	C	
(MSL)	(in ²)	Area (fl²)	Average Area (fl ²)	Depth (ft)	Volume (fl ³)	∑ Volume (ft ³)	∑ Volume (ac-ft)	∑ Volume above permanent pool (ac-ft
358	33.31	29,979	1 2 2	-		A A	199	
360	58.59	52,731	41,355	2	82,710	82,710	C. m	1.90
362	123.17	110,853	81,792	2	163,584	296.294	100 6	5.65
364	312.2	280,980	195,917	2	391,834	296,294	14 I.C.	14.65
	-	2 01	640 2		- Francisco			-
1	1.1.1.1.1					U		1
	Stand 1		1990 A		6	d 1/4		
	200		3	~	- P			
			NI C	2	a	1		FT
	2-2-		- Carlos					
	Git A	E.I.		0-F				
	16 015	to -	.0		03	0		

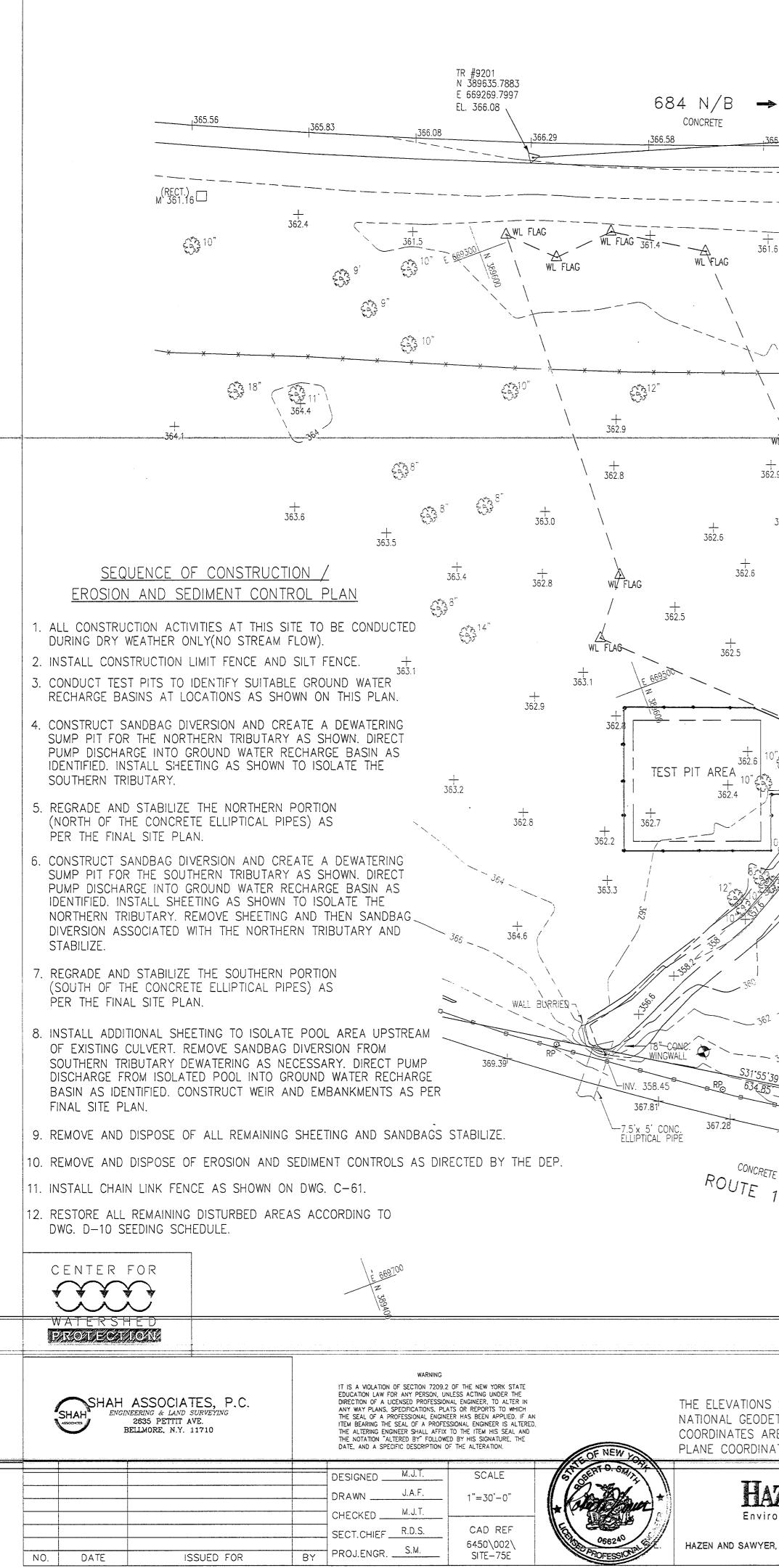
SET OVERLOU WEIN C ELEV 360.5 SIZE WEIL TO PASS QIOO @ H=2.5Ft. :. (ELEV 3632) Q100 = 326 cfs 50 SHEETS 100 SHEETS 200 SHEETS Q= CLH 22-141 22-142 22-144 320 = 3.1 (4) (2.5) Gudima L= 26.6 ft USE 25' H= U.S. ELON - 360.5 No TAILWATE- EFFECTS From EXISTING CULVENTS UNDER I-684 (SEE HY-8 PM-TOUT)

harge Data	Rarrel	Inlet pine Spillway Discharge	ade.	9 H 9 H	(II) (CIS) (II) (CfS) (A) (CfS)	0	0.54	18.0	26.0		·····································		142.4	B.0 306.0			TR PT		
Storage - Elevation - Discharge Data	Riser	High Stage Slot	Orifice Weir	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(11) (610) ()		The second se		0	0.3 12.7	0.5 27.9	2.17 0.1	1.S 14	2.5 306.0					
1四日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	Low	FIOW	2 11	$ \begin{array}{c cccc} H & Q & H & Q \\ \hline (ff) & (cfs) & (ff) & (cfs) \\ \end{array} $		0.8 054	1		26.0 2.2	2.0 D.38		01 01 01 01							
	Elevation Storage (MSL) (ac-A)				358.0 0	26.0	197		5.1	360.8 3.40 2	361.0 3.78	361.5 4.72	3 62.0 S.65	363 10.15	*				

• . •

*****80-80	LIST	OF	INPUT	DATA	FOR	TR-20	HYDROLOGY***************

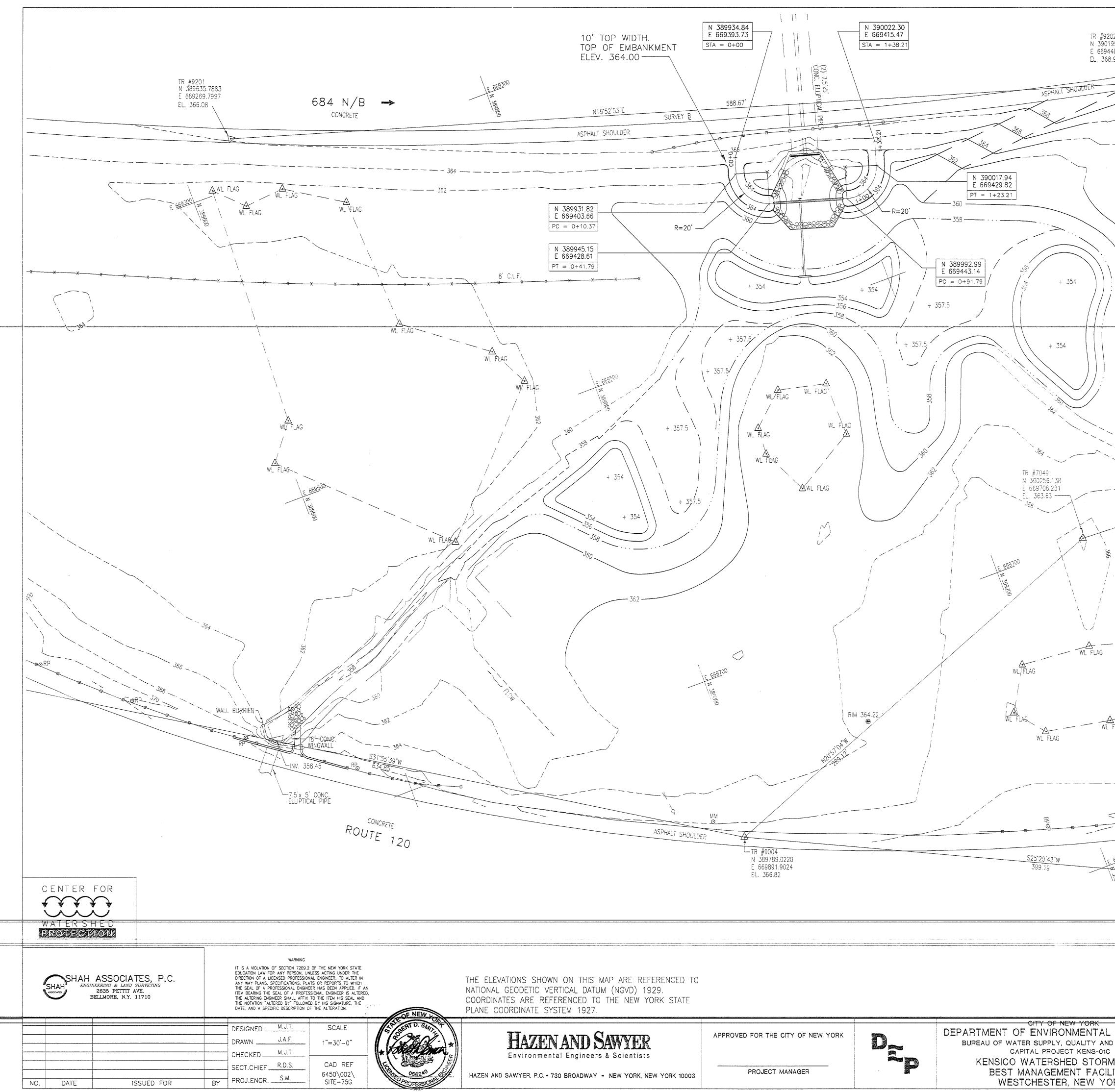
and the second		- 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910 - 1910	Anter para i	ion an be see	
mr 1-20		The second s	ULLPRINT		NOPLOTS
TIN	Kensico	Watershad Pu	Do NE Olto	T ED Bacin O	5/97 RAC
TITLE	Oltimate	Conditions	Fo N-5 Sile 5	of ED Dasin V.	
5 RAINFL 8		0.25	ayarorogy		
8	0.0	0.0025	0.005	0.0075	0.01
8	0.0125	0.015	0.0175	0.02	0.0225
8	0.026	0.0285	0.03	0.033	0.036
8	0.039	0.042	0.0455	0.049	0.052
8	0.055	0.059	0.063	0.0665	0.07
8	0.0745	0.079	0.083	0.087	0.092
8	0.097	0.1045	0.112	0.1195	0.127
8	0.1355	0.144	0.153	0.163	0.1735
8	0.185	0.1965	0.210	0.225	0.242
	0.262	0.287	0.32	0.416	0.611
8	0.689	0.7195	0.743	0.762	0.779
8	0.793	0.806	0.8185	0.829	0.84
8	0.849	0.8585	0.867	0.8755	0.886
8	0.8935	0.90	0.907	0.911	0.916
8	0.92	0.9245	0.929	0.9325	0.936
8	0.940	0.944	0.947	0.951	0.954
8	0.957	0.9605	0.963	0.9665	0.969
8	0.9725	0.975	0.9775	0.981	0.9835
8	0.986	0.9885	0.991	0.9935	0.996
8	0.9985				
9 ENDTBL					
3 STRUCT	1				
		358.0	0.0	0.0	
8		359.0	0.54	0.95	
8		360.0	0.81	1.90	
8		360.5	0.92	2.84	
8		360.8	13.7		
8				3.40	
8		361.0	27.4	3.78	
		361.5	77.5	4.72	
8		362.0	142.4	5.65	
В		363.0	306.0	10.15	
9 ENDTBL					
5 RUNOFF 1		2 0.166	75.0	0.41	10 001
RESVOR 2	12	3 358.0			100001
ENDATA					
INCREM 6		0.1			
COMPUT 7	1	1 0.0	1.5	1.0	7 2 1 01
ENDCHP 1					, 2 1 01
	1 1	0.0	3.3	1.0	7 7 1 07
COMPUT 7	1			1.0	7 2 1 02
ENDCMP 1		0.0	1.2	1.0	
COMPUT 7	1 1	. 0.0	4.2	1.0	7 2 1 03
ENDCMP 1					


1

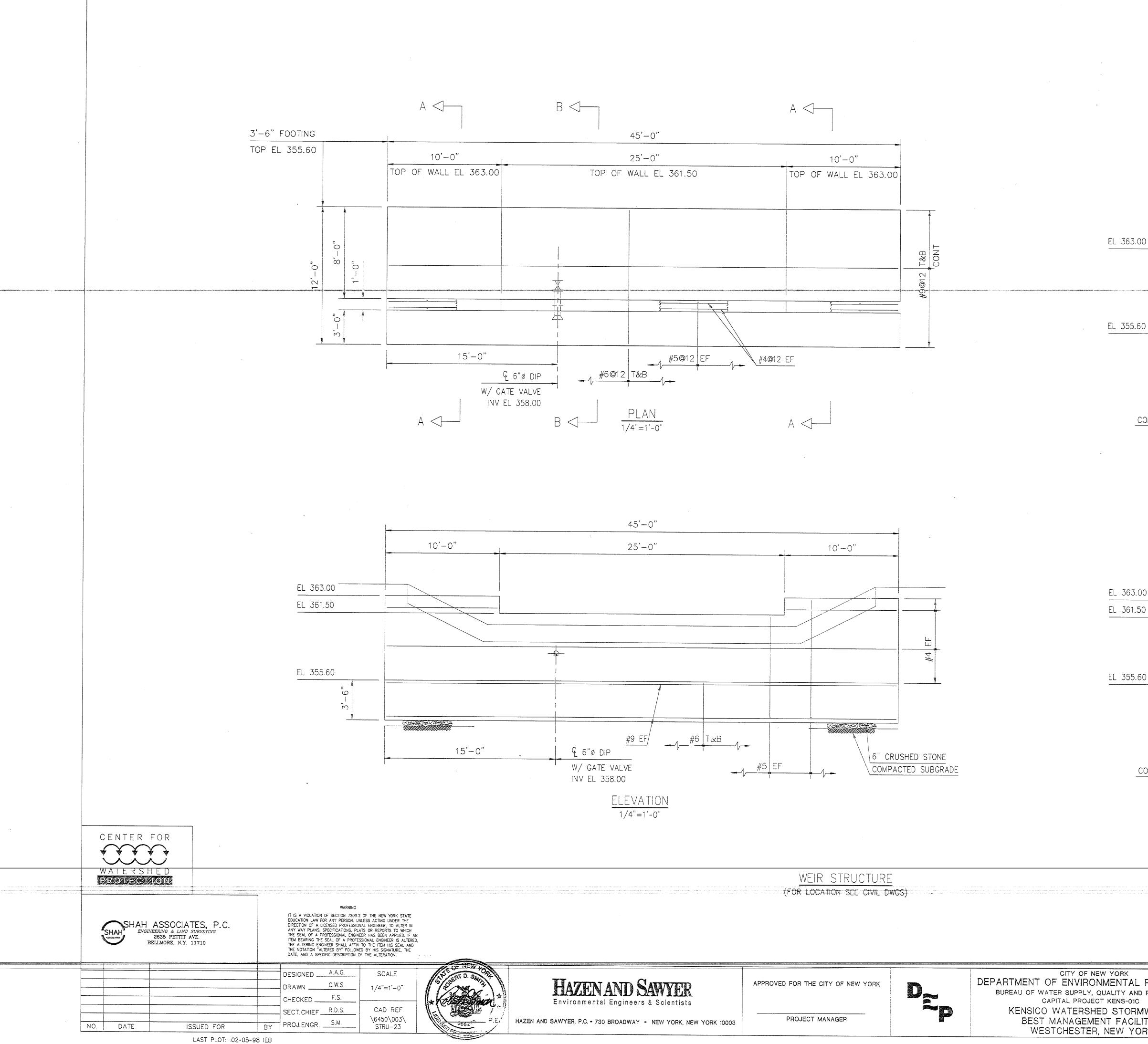
TR-20 INPUT FILE

RESVOR ROJTING


7 COMPUT	*****	10-00 LI	ST OF I	IPUT DA	TA (CONT	INUED)**	******	*******	***			
ENDCMP 1		0.0	5.		1.0		721					
7 COMPUT 7 ENDCMP 1 ENDJOB 2	- 1	0.0	7.	2	1.0		721					·.•
*******	*****			Parant	3187				. Narat			
	*****		END OF a	30-80 L	.IST****	******	*******	******	**			
											17.01	
)										312.01		

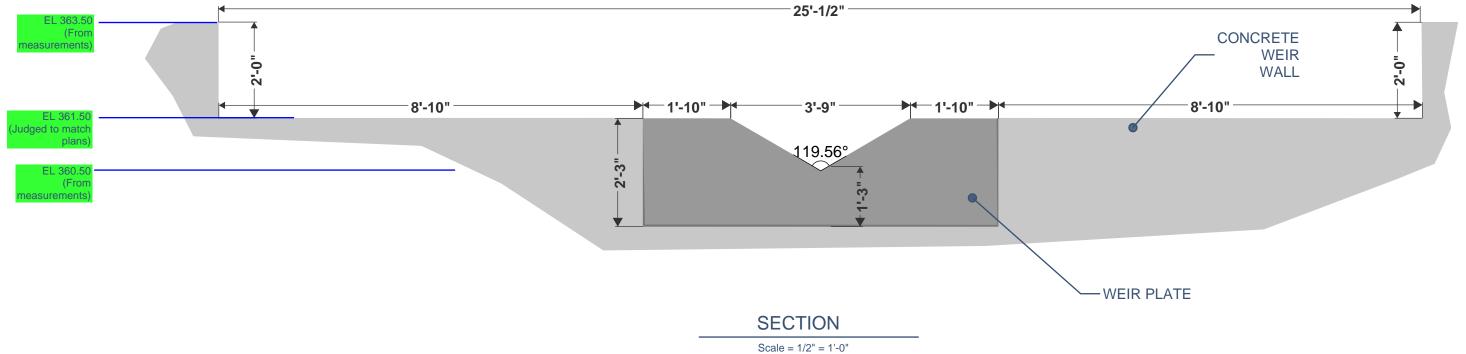

Appendix C: Existing Design Sheets

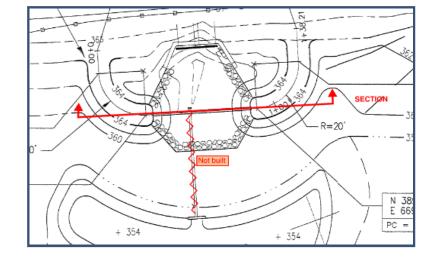
		1 1 1					
	SHEETING (ISOLATING NORTHERN	TRIB.)		TR #9202 N 390199.0875	684 N/B		
	SHEETING		SHEETING	E 669440.7429 EL. 368.94	25		
E 669300	(ISOLATING POOL) —		TING SOUTHERN TRIB.)	ASPHALT SHOULDER	+ 368 368 369 + 3		
66.73 <u>1366.97</u> <u>367.16</u>	N16'52'53"E 5 1367.42 SURVEY B 1367.05	707.02	<u> </u>		365.8 366		
	ASPHALT SHOULDER	- 366 -18" (ONC + + + + + + + + + + + + + + + + + +	+ $ -$	365.2	362		
			$\frac{+}{359.7}$ $\frac{+}{360.5}$ $+$ $\frac{+}{360.4}$	+362.5	1261.0		
	+ + +		TO BE REMOVED		Sit in Cn(
	Joseph Constraints State	TO BE	+ 58.8 + 362.6	8' <u>Z. Z. / / / / / / / / / / / / / / / / / </u>			
^		60.27	356.6 ***********************************	LcA	.cB TEST PIT AREA		-
× × × × × ×				APPROXIMATE U.S.D.A. SOIL BOUNDARY			
L 2338"	En 22	557 53 ⁸	+	SUIL BOUNDARY			
	TEST-PIT-AREA	15 ⁸⁹	E3 E38 + + + + + + + + + + + + + + + + + + +	362.4		``	- Managara and and a
+ 362.4 WL FLAG		362.9 36	+ 63.6		NORTHERN TRIBUTARY		
S52.7 WL FLAG		WL FLAG	$+ \left\{ \begin{array}{c} + \\ 362.6 \\ 363.1 \end{array} \right\}$		SANDBAG DIVERSION/BARRIER SEE DWG. D-7		
/ 362	5 - 362 - - 362 -	WIL FLAG	· · · · · · · · · · · · · · · · · · ·		SEE DWG. D-7		
+ + / / / / / / / / / / / / / / / / / /		WIL FORG	JT SI	JMP PIT WE FLAG			
+ 362.7		WIL FLAG	SE 12" 366 TR #70	JMP PIT EE DWG. D-5	STREAM		
£3 ^{10°}			N 3902 E 6697	256.138 - 706.231 - 3.63	17" W	LEGEND: ₩ WATER VALVE	
0" WL FD454 14" 73"	" 363.1	364.1 363.7				SEWER MANHOLE	
3x8 55/25/2 SANDB	ERN TRIBUTARY	303.7	E 669700	/ / Ęŝŝ 9" \ / / Ęŝ		MONITORING WELL ELECTRICAL BOX CB CATCH BASIN	
C" TE SEE DI	SION/BARRIER WG. D-7		00156		 	UNETT FOLL W/GOT WIKE	
$\frac{1}{2} + \frac{1}{2} + \frac{1}{360.4} + \frac{1}{358.4} + \frac{1}{367.9} + \frac{1}{367$	362.2	€ [•] • 11"	(+			OHW	
SUMP PIT 361.Q SEE DWG. D-5-	+ 362.6 $+$ 363.1 $+$ $+$ 363.1			WL FLAG	· τ	O SIGN DOUBLE POLE SIGN -O LIGHT POLE	
	+ 362.8 5	100	i WL/FLAG		g"*	BOULDER CONIFEROUS TREE W/DIA. BCIDUOUS TREE W/DIA.	
+ 362.30	362.4 ``~	363.4 364.0 8	22 WL FLAG		Ŕ	DOUBLE TRUNK TREE	
+ 362.33 360.9	9 361.9 + 362.7		<u>APPROXIMA</u>	VI FLAG I FLAG NTE U.S.D.A.	ر TR :	TREE CLUSTER # 12 △ TRAVERSE POINT	
39"W		363.6 12 209-14	Soil BC 366.8	UNDARY + 366.5 366.6 Ub	4	420 — EXISTING CONTOUR LINE + 415.49 EXISTING SPOT ELEVATION B-B-B-GUIDE RAIL	
366.63	363.4 	+ 364.1 +	365.52+			× × × FENCE PIER MB MAIL BOX	
366.29 ¹ 366.18 ¹	ASPHALT SHOULDER		366.7	R Q ASPHALT SHOULDER		TB TOP OF BANK BB BOTTOM OF BANK	
120	366.66	367.2 ⁺ TR #9004 367.73 368.30 ⁺ N 389789.0220 E 669891.9024 EL. 366.82	368.90 369.53 <u>S25*2</u> 300	370.25 20'43'W 5.19' 570.82 570.82		CMPCORREGATED METAL PIPENPVNO PIPE VISIBLEW.P.12"WOOD POST W/DIA.	
		EL. 366.82	NOTES:	Vien SURVE	L	O DI DRAINAGE INLET (ROUND) O SPKLR SPRINKLER HEAD	
			2. CONTRACTOR SHA	AVED SHALL BE MARKED BY T All seed and mulch all d	ISTURBED	WETLAND LINE	
······			ACCORDING TO D	MPLETION OF CONSTRUCTION WG. D-10 SEEDING SCHEDUL	E	CONSTRUCTION LIMIT FENCE	
	0		PERMIT ISSUES (THE SOIL AND M	PES AND BOUNDARIES ARE S ONLY, THE CONTRACTOR SHAL IAKE HIS OWN DETERMINATION	L INVESTIGATE I OF ANY AND	30 15 0 30'	
S SHOWN ON THIS MAP ARE REFERENCED TO ETIC VERTICAL DATUM (NGVD) 1929. RE REFERENCED TO THE NEW YORK STATE				WHICH MAY AFFECT IN ANY OF HIS WORK AND BID PRICES		1 1 1 1	
ATE SYSTEM 1927.	APPROVED FOR THE CITY OF NEW YORK	DEPARTMENT	CITY OF NEW YORK OF ENVIRONMENTAL PROTECTION		74, 75 BASIN E-11	DATE SEPTEMBER 1997	
ZEN AND SAWYER onmental Engineers & Scientists			VATER SUPPLY, QUALITY AND PROTECTION CAPITAL PROJECT KENS-01C O WATERSHED STORMWATER	EXTENDED D	ETENTION BASIN	SHEET65 0F93	
R, P.C 730 BROADWAY - NEW YORK, NEW YORK 10003	PROJECT MANAGER		T MANAGEMENT FACILITIES ESTCHESTER, NEW YORK		EROSION AND	dwg. no. <u>C-59</u>	


WESICHESIER, NEW YORK

ZENAND	SAWYER
ronmental Engine	ers & Scientists

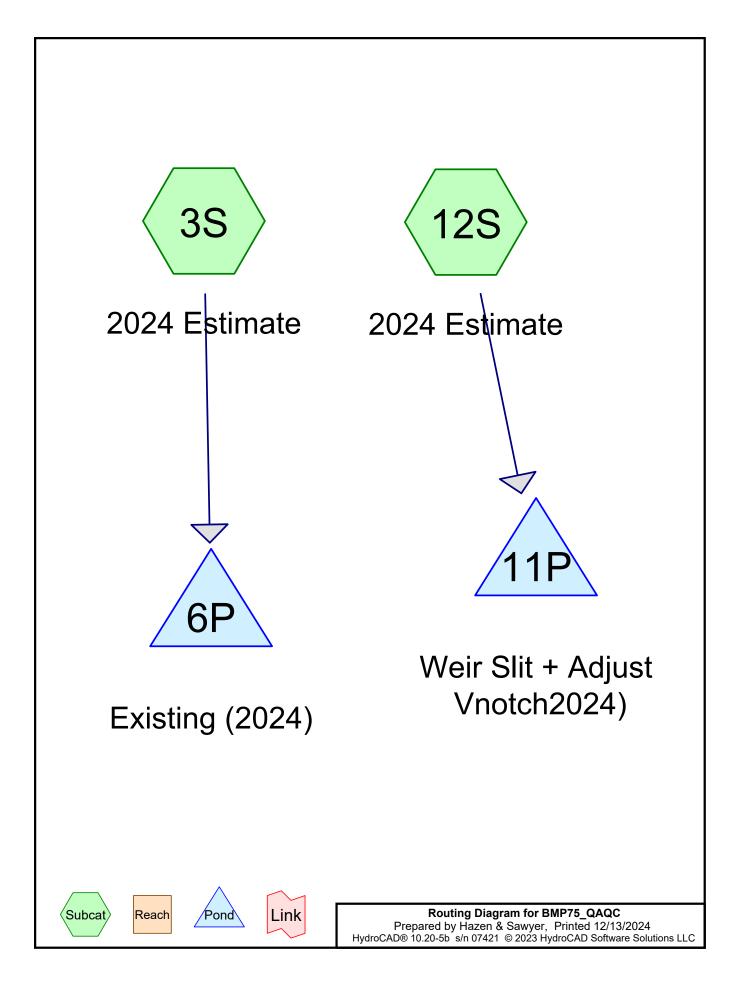
			LEGEND:	
.0875 .7429			PERM. POOL	
4	2-2-2		ED. ELEV. 100 YR. ELEV.	
		W	WATER VALVE	
		¥ ∑ ⊗ ⊗	SEWER MANHOLE UNKNOWN MANHOLE	
		@	MONITORING WELL	
		E CB	ELECTRICAL BOX CATCH BASIN	/*
		· MON	MONUMENT	
			UTILITY POLE	
		— — ОНШ— —	UTILITY POLE W/GUY WIRE OVER HEAD WIRES	
		۵	FIRE HYDRANT BOLLARD	
		-0-	SIGN	
		ਹਰ	DOUBLE POLE SIGN	
\			LIGHT POLE BOULDER	
		9"***	CONIFEROUS TREE W/DIA.	
	· · ·	د 12"	DECIDUOUS TREE W/DIA.	
		(See	DOUBLE TRUNK TREE	
		and the second sec	TREE CLUSTER	
		تريخ TR # 12 🛆	TRAVERSE POINT	
		— — 420 — —		
/////	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	+ 415.49	EXISTING SPOT ELEVATION	
				
		0	PIER	
362 - 360		□ MB	MAIL BOX ROCK OUTCROP	
		TB	TOP OF BANK	
		BB CMP	BOTTOM OF BANK CORREGATED METAL PIPE	
		NPV	NO PIPE VISIBLE	
		W.P.12" O DI	•	
WL FLAG		O SPKL HEAD		
		HŁAD		
WE ELAG			CLEARING LIMITS	
Star Star		420		
(ALT				
Y				
WL FLAG				
1 _ ~				
J.				
ASPHALT SHOULDER				
9900				
SURVEY R				
		a na fara-ana ana ang ang ang ang ang ang ang ang		
			30 15 0 30'	
		1"=30'-0"		
	BMP 74. 75	1"=30'-0"	DATE SEPTEMBER 1997	
	BMP 74, 75 SUB-BASIN E-11		DATE SEPTEMBER 1997	
PROTECTION	BMP 74, 75 SUB-BASIN E-11 EXTENDED DETENTION BA		DATE	
PROTECTION PROTECTION VATER TES	SUB-BASIN E-11			




	12'-0"		
3'-0	" 8'−0" 1'−0"		
) –			
		regen szárály, man <mark>negyettere managungsagun den dentenden kaldada szárály az a szeremeteksetetetetetetetetetetetetetetetetete</mark>	aniasyadoonaddaaninaan aadd <mark>aac</mark> aa
)	#5 EF		
#6 T&B / 6" CRUSHED STONE			
OMPACTED SUBGRADE	ION A-A		
$\frac{31001}{1/4"=1}$			
	12'-0"		
3'-0	· · · · · · · · · · · · · · · · · · ·		
	1'-0"		
0 D			
	#5 EF <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		
#4 	W/ GATE VALVE INV EL 358.00		
<u>#6 T&B</u> / 🎬	#9 T&B		×
6" CRUSHED STONE OMPACTED SUBGRADE			
S F	ECTION B-B		
	4"=1'-0"		
	NOTES:		
	1. FOR GE SEE DW	NERAL NOTES AND TYPICAL DETAILS	
	• 1/4	10123 7' =1'-0"	·
PROTECTION	BMP 74	DATE SEPTEMBER 1997	
PROTECTION	EXTENDED DETENTION BASIN	SHEET <u>92</u> of <u>93</u>	
TIES RK	WEIR STRUCTURE	DWG. NO. <u>S-14</u>	

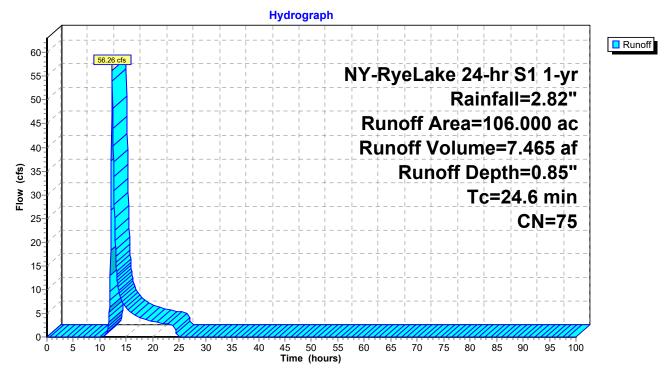
-

Appendix D: As-Built Outlet Structure Diagram



BMP 74, 75 AS-BUILT OUTLET WEIR DIMENSIONS

Appendix E: HydroCAD

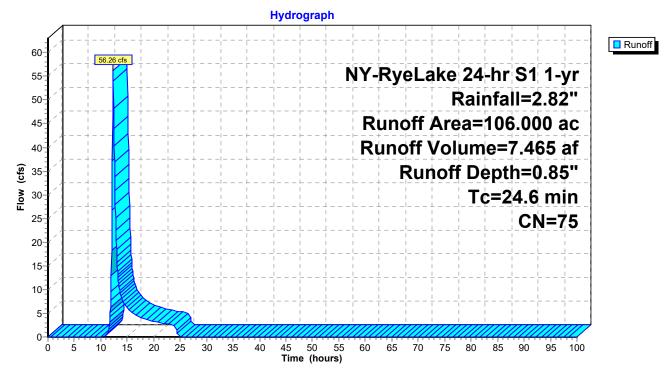

Summary for Subcatchment 3S: 2024 Estimate

Runoff = 56.26 cfs @ 12.32 hrs, Volume= Routed to Pond 6P : Existing (2024) 7.465 af, Depth= 0.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs NY-RyeLake 24-hr S1 1-yr Rainfall=2.82"

_	Area	(ac)	CN	Desc	cription		
*	3.	760	55	fores	st		
*	7.	840	70	fores	st		
*	7.	450	79	instit	utional		
*	26.	910	70	trans	sportation		
*	60.	040	79	trans	portation		
	106.	000	75	Weig	ghted Aver	age	
	106.	000		100.	00% Pervi	ous Area	
	Тс	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	24.6						Direct Entry,

Subcatchment 3S: 2024 Estimate


Summary for Subcatchment 12S: 2024 Estimate

Runoff = 56.26 cfs @ 12.32 hrs, Volume= 7.465 af, Depth= 0.85" Routed to Pond 11P : Weir Slit + Adjust Vnotch2024)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs NY-RyeLake 24-hr S1 1-yr Rainfall=2.82"

_	Area	(ac)	CN	Desc	cription		
*	3.	760	55	fores	st		
*	7.	840	70	fores	st		
*	7.	450	79	instit	utional		
*	26.	910	70	trans	sportation		
*	60.	040	79	trans	portation		
	106.	000	75	Weig	ghted Aver	age	
	106.	000		100.	00% Pervi	ous Area	
	_						
	Тс	Leng		Slope	Velocity	Capacity	
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	24.6						Direct Entry,
							-

Subcatchment 12S: 2024 Estimate

Summary for Pond 6P: Existing (2024)

Inflow Area =	106.000 ac,	0.00% Impervious, Inflow	Depth = 0.85" for 1-yr event
Inflow =	56.26 cfs @	12.32 hrs, Volume=	7.465 af
Outflow =	23.94 cfs @	12.82 hrs, Volume=	7.326 af, Atten= 57%, Lag= 30.4 min
Primary =	23.94 cfs @	12.82 hrs, Volume=	7.326 af

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Starting Elev= 360.50' Storage= 3.793 af Peak Elev= 361.87' @ 12.82 hrs Storage= 6.022 af (2.229 af above start)

Plug-Flow detention time= 728.3 min calculated for 3.531 af (47% of inflow) Center-of-Mass det. time= 235.4 min (1,145.0 - 909.6)

Volume	Inve	ert Avail.Stora	ge Storage Description				
#1	354.0	0' 14.620	af Custom Stage DataListed below				
Elevetia		ma Chana					
Elevatio		Im.Store					
(fee		cre-feet)					
354.0	00	0.000					
356.0	00	0.379					
358.0	00	1.261					
360.0	00	3.135					
360.4	2	3.675					
361.5	50	5.264					
362.0	00	6.278					
362.6	60	7.998					
364.0	00	14.620					
Device	Routing	Invert	Outlet Devices				
#1	Primary	360.50'	123.9 deg x 1.00' rise Steel V-Notch Cv= 2.48 (C= 3.10)				
#2	Primary	361.50'	25.0' long x 0.5' breadth Concrete Rect Weir				
	,		Head (feet) 0.20 0.40 0.60 0.80 1.00				
			Coef. (English) 2.80 2.92 3.08 3.30 3.32				
Primary	Primary OutFlow Max=23.78 cfs @ 12.82 hrs HW=361.87' (Free Discharge)						

Primary OutFlow Max=23.78 cfs @ 12.82 hrs HW=361.87 **1=Steel V-Notch** (Orifice Controls 7.24 cfs @ 3.86 fps)

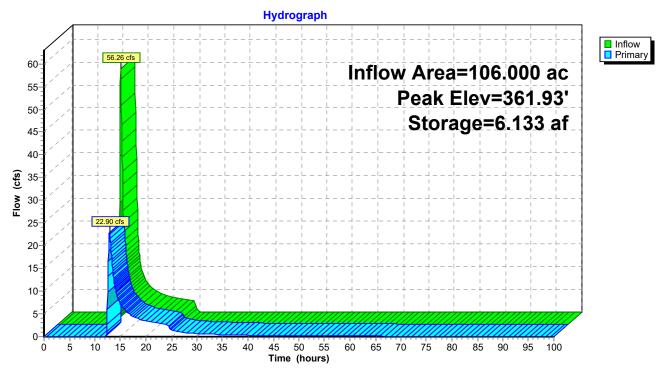
2=Concrete Rect Weir (Weir Controls 16.54 cfs @ 1.77 fps)

BMP75_QAQC

Prepared by Hazen & Sawyer HydroCAD® 10.20-5b s/n 07421 © 2023 HydroCAD Software Solutions LLC

Pond 6P: Existing (2024)

Summary for Pond 11P: Weir Slit + Adjust Vnotch2024)


Inflow Area =	106.000 ac,	0.00% Impervious, Infl	ow Depth = 0.85" for 1-yr event
Inflow =	56.26 cfs @	12.32 hrs, Volume=	7.465 af
Outflow =	22.90 cfs @	12.85 hrs, Volume=	7.283 af, Atten= 59%, Lag= 31.8 min
Primary =	22.90 cfs @	12.85 hrs, Volume=	7.283 af

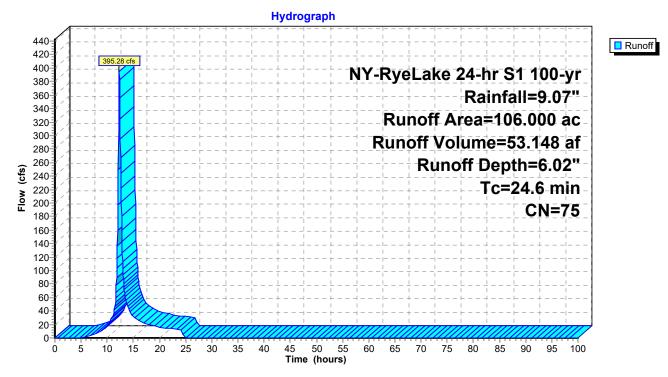
Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Starting Elev= 360.50' Storage= 3.793 af Peak Elev= 361.93' @ 12.85 hrs Storage= 6.133 af (2.340 af above start)

Plug-Flow detention time= 981.3 min calculated for 3.490 af (47% of inflow) Center-of-Mass det. time= 359.2 min (1,268.8 - 909.6)

Volume	Inve	rt Avail.Stora	age Storage Description
#1	354.0	0' 14.620	0 af Custom Stage DataListed below
Elevatio (fee 354.0 356.0 358.0 360.0 360.4 361.5 362.0 362.0 362.0 362.0 362.0	on Cu et) (ad 00 00 00 12 50 00 50 50	m.Store <u>cre-feet)</u> 0.000 0.379 1.261 3.135 3.675 5.264 6.278 7.998 14.620	
Device	Routing	Invert	Outlet Devices
#1 #2	Primary	361.50' 360.50'	25.0' long x 0.5' breadth Concrete Rect Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=22.77 cfs @ 12.85 hrs HW=361.93' (Free Discharge) -1=Concrete Rect Weir (Weir Controls 20.61 cfs @ 1.93 fps) -2=New Slit Weir (Orifice Controls 2.16 cfs @ 4.30 fps)

Pond 11P: Weir Slit + Adjust Vnotch2024)

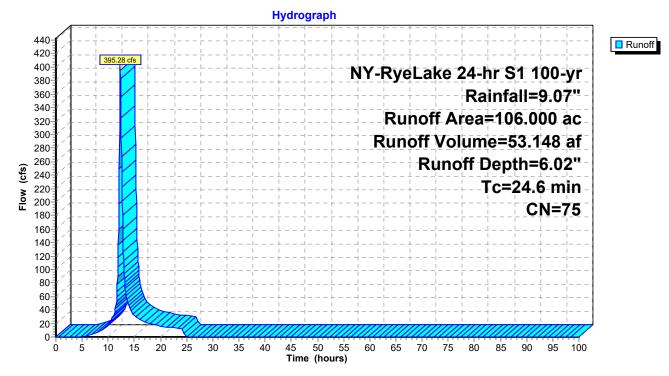

Summary for Subcatchment 3S: 2024 Estimate

Runoff = 395.28 cfs @ 12.29 hrs, Volume= Routed to Pond 6P : Existing (2024) 53.148 af, Depth= 6.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs NY-RyeLake 24-hr S1 100-yr Rainfall=9.07"

_	Area	(ac)	CN	Desc	cription		
*	3.	760	55	fores	st		
*	7.	840	70	fores	st		
*	7.	450	79	instit	utional		
*	26.	910	70	trans	sportation		
*	60.	040	79	trans	portation		
	106.	000	75	Weig	ghted Aver	age	
	106.	000		100.	00% Pervi	ous Area	
	Тс	Leng	lth	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	24.6						Direct Entry,
							•

Subcatchment 3S: 2024 Estimate


Summary for Subcatchment 12S: 2024 Estimate

Runoff = 395.28 cfs @ 12.29 hrs, Volume= 53.148 af, Depth= 6.02" Routed to Pond 11P : Weir Slit + Adjust Vnotch2024)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs NY-RyeLake 24-hr S1 100-yr Rainfall=9.07"

_	Area	(ac)	CN	Desc	cription		
*	3.	760	55	fores	st		
*	7.	840	70	fores	st		
*	7.	450	79	instit	utional		
*	26.	910	70	trans	sportation		
*	60.	040	79	trans	sportation		
	106.	000	75	Weig	ghted Aver	age	
	106.	000		100.	00% Pervi	ous Area	
	_						
	Tc	Leng		Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	24.6						Direct Entry,
							-

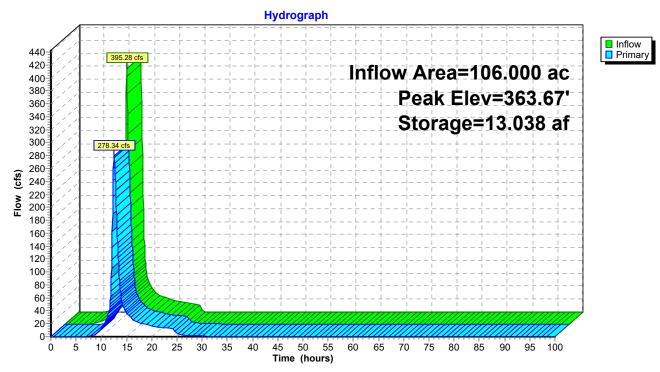
Subcatchment 12S: 2024 Estimate

Summary for Pond 6P: Existing (2024)

Inflow Area =	106.000 ac,	0.00% Impervious,	Inflow Depth = 6.02	2" for 100-yr event	
Inflow =	395.28 cfs @	12.29 hrs, Volume	= 53.148 af	-	
Outflow =	278.34 cfs @	12.53 hrs, Volume	= 53.006 af, <i>i</i>	Atten= 30%, Lag= 14.3 min	
Primary =	278.34 cfs @	12.53 hrs, Volume	= 53.006 af		
Routing by Stor-Ind method, Time Span= $0.00-100.00$ brs, dt= 0.05 brs					

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Starting Elev= 360.50' Storage= 3.793 af Peak Elev= 363.67' @ 12.53 hrs Storage= 13.038 af (9.246 af above start)

Plug-Flow detention time= 122.0 min calculated for 49.189 af (93% of inflow) Center-of-Mass det. time= 62.0 min (903.5 - 841.6)


Volume	Invert	Avail.Stora	ge Storage Description
#1	354.00'	14.620	af Custom Stage DataListed below
	a a		
Elevation	Cum.St		
(feet)	(acre-fe		
354.00	0.0	000	
356.00	0.3	379	
358.00	1.2	261	
360.00	3.2	135	
360.42	3.6	675	
361.50	5.2	264	
362.00	6.2	278	
362.60	7.9	998	
364.00	14.6	620	
Device Re	outing	Invert	Outlet Devices
#1 Pr	rimary	360.50'	123.9 deg x 1.00' rise Steel V-Notch Cv= 2.48 (C= 3.10)
#2 Pr	rimary	361.50'	25.0' long x 0.5' breadth Concrete Rect Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
Primary Ou	utFlow Max	=277.84 cfs	@ 12.53 hrs HW=363.66' (Free Discharge)
T-1=Steel	V-Notch (O	rifice Contr	ols 13.77 cfs @ 7.34 fps)

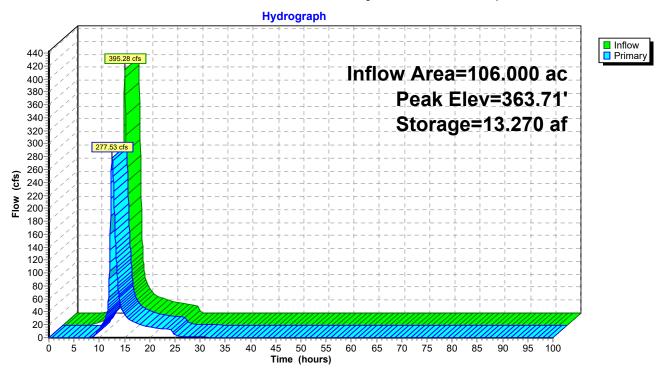
2=Concrete Rect Weir (Weir Controls 264.07 cfs @ 4.88 fps)

BMP75_QAQC

Prepared by Hazen & Sawyer HydroCAD® 10.20-5b s/n 07421 © 2023 HydroCAD Software Solutions LLC

Pond 6P: Existing (2024)

Summary for Pond 11P: Weir Slit + Adjust Vnotch2024)

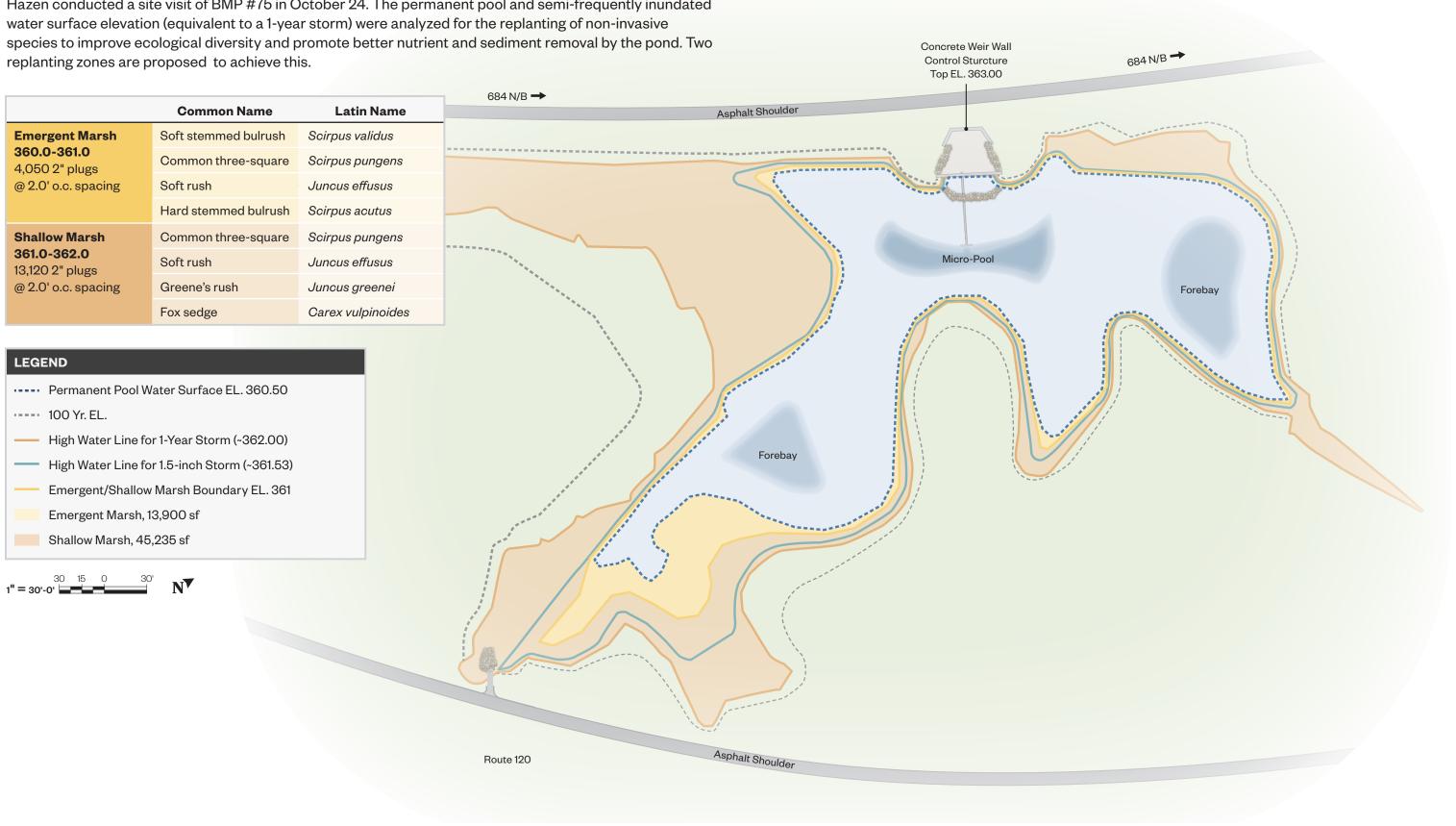

Inflow Area	a =	106.000 ac,	0.00% Impervious, Inflow	Depth = 6.02" for 100-yr event
Inflow	=	395.28 cfs @	12.29 hrs, Volume=	53.148 af
Outflow	=	277.53 cfs @	12.53 hrs, Volume=	52.962 af, Atten= 30%, Lag= 14.4 min
Primary	=	277.53 cfs @	12.53 hrs, Volume=	52.962 af
	-			

Routing by Stor-Ind method, Time Span= 0.00-100.00 hrs, dt= 0.05 hrs Starting Elev= 360.50' Storage= 3.793 af Peak Elev= 363.71' @ 12.53 hrs Storage= 13.270 af (9.478 af above start)

Plug-Flow detention time= 140.6 min calculated for 49.169 af (93% of inflow) Center-of-Mass det. time= 77.6 min (919.1 - 841.6)

Volume	Inve	rt Avail.Stora	age Storage Description
#1	354.0	0' 14.620	0 af Custom Stage DataListed below
Elevatio (fee 354.0 356.0 358.0 360.4 360.4 361.5 362.0 362.6	on Cu bt) (a 00 00 00 00 12 50 00	m.Store cre-feet) 0.000 0.379 1.261 3.135 3.675 5.264 6.278 7.998	
364.0		14.620	
Device	Routing	Invert	Outlet Devices
#1	Primary Primary	361.50' 360.50'	Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32 New Slit Weir, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 0.33 1.00 Width (feet) 0.25 0.25 1.00

Primary OutFlow Max=277.07 cfs @ 12.53 hrs HW=363.71' (Free Discharge) -1=Concrete Rect Weir (Weir Controls 273.13 cfs @ 4.94 fps) -2=New Slit Weir (Orifice Controls 3.95 cfs @ 7.87 fps)



Pond 11P: Weir Slit + Adjust Vnotch2024)

Appendix F: Proposed Planting Plan

Proposed Landscaping

Hazen conducted a site visit of BMP #75 in October 24. The permanent pool and semi-frequently inundated

